地球信息科学学报 ›› 2018, Vol. 20 ›› Issue (1): 128-137.doi: 10.12082/dqxxkx. 2018.170287
• 遥感科学与应用技术 • 上一篇
收稿日期:
2017-06-26
修回日期:
2017-09-28
出版日期:
2018-01-20
发布日期:
2018-01-20
通讯作者:
宫辉力
E-mail:994761911@qq.com;gonghl@263.net
作者简介:
作者简介:刘凯斯(1989-),女,博士生,主要从事北京地铁地面沉降研究。E-mail:
基金资助:
LIU Kaisi, GONG Huili*(), CHEN Beibei
Received:
2017-06-26
Revised:
2017-09-28
Online:
2018-01-20
Published:
2018-01-20
Contact:
GONG Huili
E-mail:994761911@qq.com;gonghl@263.net
Supported by:
摘要:
本文以北京市地铁6号线为研究区,采用PS-InSAR技术对研究区53景Terra SAR影像进行永久散射体干涉处理,获取了研究区地面沉降信息,初步揭示了线状研究区的地面沉降空间分布特征,进一步结合层次熵值法,定位6号线典型路段,深入分析了地面沉降发展的严重程度及不均匀性。研究结果表明:① 6号线沿线自西向东沉降速率增大,最大年沉降速率为77.2 mm/a,出现在常营—草房路段;② 综合熵值以金台路站为分界,西侧熵值小(小于0.5),东侧接近或大于1,金台路以东路段沉降量大,且不均匀沉降严重;③ 在地质条件相似的金台路-十里堡、青年路-褡裢坡、黄渠-草房3个路段内,沉降严重程度同时受年沉降速率、斜率、曲率半径变化驱动,且相关性强。
刘凯斯, 宫辉力, 陈蓓蓓. 基于InSAR数据的北京地铁6号线地面沉降监测分析[J]. 地球信息科学学报, 2018, 20(1): 128-137.DOI:10.12082/dqxxkx. 2018.170287
LIU Kaisi,GONG Huili,CHEN Beibei. Monitoring and Analysis of Land Subsidence of Beijing Metro Line 6 Based on InSAR Data[J]. Journal of Geo-information Science, 2018, 20(1): 128-137.DOI:10.12082/dqxxkx. 2018.170287
表2
年均沉降速率熵值矩阵结果"
车站 | 年均沉降速率/(mm/a) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
3,-5 | -5,-13 | -13,-21 | -21,-29 | -29,-37 | -37,-45 | -45,-53 | -53,-61 | -61,-69 | -69,-77 | 熵值 | |
东四-朝阳门 | 200 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.158 |
朝阳门-东大桥 | 200 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.158 |
东大桥-呼家楼 | 200 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.158 |
呼家楼-金台路 | 14 | 117 | 69 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.521 |
金台路-十里堡 | 0 | 117 | 83 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.542 |
十里堡-青年路 | 0 | 0 | 43 | 157 | 0 | 0 | 0 | 0 | 0 | 0 | 0.561 |
青年路-褡裢坡 | 0 | 0 | 10 | 87 | 92 | 11 | 0 | 0 | 0 | 0 | 1.069 |
褡裢坡-黄渠 | 0 | 0 | 0 | 0 | 0 | 200 | 0 | 0 | 0 | 0 | 0.529 |
黄渠-常营 | 0 | 0 | 0 | 0 | 11 | 56 | 38 | 62 | 33 | 0 | 1.828 |
常营-草房 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 26 | 126 | 48 | 1.834 |
表3
综合熵值矩阵"
车站 | 沉降速率 | 斜率 | 曲率半径变化值 | 熵值 |
---|---|---|---|---|
东四-朝阳门 | 0.158 | 0.201 | 0.247 | 0.158 |
朝阳门-东大桥 | 0.158 | 0.199 | 0.217 | 0.149 |
东大桥-呼家楼 呼家楼-金台路 | 0.158 | 0.206 | 0.217 | 0.15 |
0.521 | 0.815 | 0.516 | 0.471 | |
金台路-十里堡 | 0.542 | 2.387 | 1.761 | 1.177 |
十里堡-青年路 | 0.561 | 1.414 | 1.783 | 0.971 |
青年路-褡裢坡 | 1.069 | 2.381 | 3.389 | 1.777 |
褡裢坡-黄渠 | 0.529 | 1.187 | 1.7836 | 0.911 |
黄渠-常营 | 1.828 | 1.739 | 0.666 | 1.080 |
常营-草房 | 1.834 | 2.029 | 1.783 | 1.459 |
[1] |
殷跃平,张作辰,张开军.我国地面沉降现状及防治对策研究[J].中国地质灾害与防治学报,2005,16(2):1-8.
doi: 10.3969/j.issn.1003-8035.2005.02.001 |
[ Yin Y P, Zhang Z C, Zhang K J.Land subsidence and counter measures for its prevention in China[J]. The Chinese Journal of Geological Hazard and Control, 2005,16(2):1-8. ]
doi: 10.3969/j.issn.1003-8035.2005.02.001 |
|
[2] | 葛大庆. 区域性地面沉降InSAR监测关键技术研究[D].北京:中国地质大学,2013. |
[ Ge D Q.Research on the key techniques of SAR interferometry for regional land subsidence monitoring[D]. Beijing: China University of Geosciences, 2013. ] | |
[3] | 陈蓓蓓,宫辉力,李小娟.基于InSAR技术北京市地区地面沉降监测与风险分析[J].地理与地理信息科学,2011(3):16-18. |
[ Chen B B, Gong H L, Li X J, et al.Monitoring and risk analysis of land subsidence in Beijing based on interferometric synthetic aperture radar (InSAR) technique[J]. Geography and Geo-Information Science, 2011(3):16-18. ] | |
[4] |
习铁宏. 北京地铁劲松站暗挖施工沉降与降水沉降叠加分析及探讨[J].施工技术,2015(16):104-107.
doi: 10.7672/sgjs2015160104 |
[ Xi T H.Analysis and discussion on settlement caused by subsurface excavation construction and dewatering at Jinsong subway station of Beijing[J]. Construction Technology, 2015(16):104-107. ]
doi: 10.7672/sgjs2015160104 |
|
[5] |
宫辉力,张有全,李小娟.基于永久散射体雷达干涉测量技术的北京市地区地面沉降研究[J].自然科学进展,2009,19(11):1261-1266.
doi: 10.3321/j.issn:1002-008X.2009.11.015 |
[ Gong H L, Zhang Y Q, Li X J, et al.Study on land subsidence in Beijing based on permanent scatterers radar interferometry[J]. Progress in Natural Science, 2009,19(11):1261-1266. ]
doi: 10.3321/j.issn:1002-008X.2009.11.015 |
|
[6] |
葛大庆,殷跃平,王艳,等.地面沉降-回弹及地下水位波动的InSAR长时序监测——以德州市为例[J]. 国土资源遥感,2014,26(1):103-109.
doi: 10.6046/gtzyyg.2014.01.18 |
[ Ge D Q, Yin Y P, Wang Y, et al.Seasonal subsidence - rebound and ground water level changes monitoring by using coherent target InSAR technique: A case study of Dezhou, Shandong[J]. Remote Sensing for Land and Resources, 2014,26(1):103-109. ]
doi: 10.6046/gtzyyg.2014.01.18 |
|
[7] | 马翔旭. 基于InSAR技术监测北京市地铁开发对地面沉降的影响[D].北京:首都师范大学,2013. |
[ Ma X X.Monitor the impact of Beijing subway development on land subsidence based on InSAR technology[D]. Beijing: Capital Normal University, 2013. ] | |
[8] | 杨子奇,葛克水,李皓,等.北京地铁九龙山-大郊亭区间隧道开挖引起的地表沉降研究[J].西部探矿工程, 2016(6):201-206. |
[ Yang Z Q, Ge K S, Li H, et al.Study on surface subsidence caused by tunnel excavation between Jiulongshan - Dajiao Pavilion in Beijing subway[J]. Western Prospecting Project, 2016(6):201-206. ] | |
[9] |
Olga S, Ewa G.Land subsidence in the Cerro Prieto Geothermal Field, Baja California, Mexico, from 1994 to 2005 - An integrated analysis of D-InSAR. Leveling and geological data[J]. Journal of Volcanology and Geothermal Research, 2011,204:76-90.
doi: 10.1016/j.jvolgeores.2011.03.004 |
[10] |
缪林昌,王非,吕伟华.城市地铁隧道施工引起的地面沉降[J].东南大学学报(自然科学版),2008,28(2):293-297.
doi: 10.3321/j.issn:1001-0505.2008.02.022 |
[ Miao L C, Wang F, Lv W H.Ground surface settlement due to urban tunnel construction[J]. Journal of Southeast University (Natural Science Edition), 2008,28(2):293-297. ]
doi: 10.3321/j.issn:1001-0505.2008.02.022 |
|
[11] | 莫云. 武汉地铁施工引起地面沉降预测方法研究以武汉地铁广埠屯至名都站区间为例[D].北京:中国地质大学,2010. |
[ Mo Y.Study on predicting methods of ground settlement induced by subway tunneling work-caused by the section between Mingdu and Guangbutun Station in Wuhan subway[D]. Beijing: China University of Geosciences, 2010. ] | |
[12] |
徐传杰. 地铁浅埋暗挖施工中地面沉降监测技术探析[J]. Technology And Market, 2011,18(4):42-43.
doi: 10.3969/j.issn.1006-8554.2011.04.023 |
[ Xu C J.Analysis of ground subsidence monitoring technology in subway shallow buried construction[J]. Technology and Market, 2011,18(4): 42-43. ]
doi: 10.3969/j.issn.1006-8554.2011.04.023 |
|
[13] |
上官云龙,上官玉龙,李栋国.北京地铁四号线北宫门车站基坑的降水工程设计[J].长春工程学院学报(自然科学版), 2011,12(3):11-13.
doi: 10.3969/j.issn.1009-8984.2011.03.004 |
[ ShangGuan Y L, ShangGuan Y L, Li D G. The designing of precipitation engineering to the foundation pit in Beigongmen station of Beijing subway line 4[J]. Journal Changchun Institute of Technology (Natural Science Edition), 2011,12(3):11-13. ]
doi: 10.3969/j.issn.1009-8984.2011.03.004 |
|
[14] |
罗云峰. 地铁隧道盾构施工引起的地面沉降规律分析[J].深圳土木与建筑,2008,5(1):44-46.
doi: 10.3969/j.issn.1008-0112.2008.02.008 |
[ Luo Y F.Analysis on ground settlement law caused by construction of shield tunnel in Metro Tunnel[J]. Shenzhen Civil and Architecture, 2008,5(1):44-46. ]
doi: 10.3969/j.issn.1008-0112.2008.02.008 |
|
[15] | 黄雅虹,吕悦军,周毅,等.北京亦庄轻轨工程场地水位下降引起地面沉降量的评估方法探讨[J].岩土力学,2009(8):2458-2460. |
[ Huang Y H, Lv Y J, Zhou Y, et al.A method for estimating land subsidence induced by ground water extraction and its application to site evaluation of Yizhuang light railway in Beijing[J]. Rock and Soil Mechanics, 2009(8):2458-2460. ] | |
[16] |
Sandra H, Luis O, et al.Persistent Scatterers Interferometry detects and measures ground subsidence in Lisbon[J]. Remote Sensing of Environment, 2011,115:2152-2167.
doi: 10.1016/j.rse.2011.04.021 |
[17] |
葛大庆,张玲,王艳,等.上海地铁10号线建设与运营过程中地面沉降效应的高分辨率InSAR监测及分析[J].上海国土资源,2014,35(4):62-67.
doi: 10.3969/j.issn.2095-1329.2014.04.014 |
[ Ge D Q, Zhang L, Wang Y, et al.Monitoring subsidence on Shanghai Metro line 10 during construction and operation using high-resolution InSAR[J]. Shanghai Land & Resources, 2014,35(4):62-67. ]
doi: 10.3969/j.issn.2095-1329.2014.04.014 |
|
[18] |
Ferretti A, Prati C, Rocca F.Permanent scatterers in SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000,38(5):2202-2212.
doi: 10.1109/36.868878 |
[19] | 陈蓓蓓,宫辉力,李小娟,等.北京典型地下水漏斗载荷密度与地面沉降相关性[J].应用基础与工程科学学报,2013,21(6):1046-1056. |
[ Chen B B, Gong H L, Li X J, et al.Relationship between load density and land subsidence of typical ground water funnel area of Beijing, China[J]. Journal of Basic Science and Engineering, 2013,21(6):1046-1056. ] | |
[20] | 魏新江,邓志秋等.可拓评价方法和熵值法相结合的基坑安全评价[J].岩土工程学报,2008(10):673-674. |
[ Wei X J, Deng Z Q, et al.Safety evaluation of foundation pits by extension assessment method combined with entropy law[J]. Chinese Journal of Geotechnical Engineering, 2008(10):673-674. ] | |
[21] | Wen X X, Zheng Y Y, Zhang J S.Comprehensive evaluation of environment quality of Fuzhou based on entropy-weight and matter-element model[J]. Safety and Environmental Engineering, 2011,18(1):29-32. |
[22] | 杨潇,李翔宇,朱宝林.基于长期沉降运营地铁隧道健康诊断[J].沈阳建筑大学学报(自然科学版),2014,30(1):49-55. |
[ Yang X, Li X Y, Zhu B L.Research on the health diagnosis of Metro Tunnel based on the long-term settlement[J]. Journal of Shenyang Jianzhu University( Natural Science), 2014,30(1):49-55. |
[1] | 覃纹,黄秋燕,庾露,胡宝清. 南宁在建地铁沿线地表沉降监测[J]. 地球信息科学学报, 2019, 21(9): 1467-1478. |
[2] | 黄俊松, 曾琪明, 高胜, 焦健, 胡乐银. 适用于自然地表形变反演的小基线集方法[J]. 地球信息科学学报, 2018, 20(4): 440-451. |
[3] | 祝秀星, 陈蜜, 宫辉力, 李小娟, 余洁, 朱琳, 周玉营, 李昱. 采用时序InSAR技术监测北京地铁网络沿线地面沉降[J]. 地球信息科学学报, 2018, 20(12): 1810-1819. |
[4] | 牛腾, 岳德鹏, 李倩, 于强, 于佳鑫, 方敏哲. 基于GLM-PSO-coKriging模型的地表形变研究[J]. 地球信息科学学报, 2018, 20(11): 1579-1591. |
[5] | 周超凡, 宫辉力, 陈蓓蓓, 郭琳, 高明亮. 北京地面沉降时空分布特征研究[J]. 地球信息科学学报, 2017, 19(2): 205-215. |
[6] | 周玉营, 陈蜜, 宫辉力, 李小娟, 余洁, 祝秀星. 基于时序InSAR的京津高铁北京段地面沉降监测[J]. 地球信息科学学报, 2017, 19(10): 1393-1403. |
[7] | 周朝栋, 宮辉力, 张有全, 段光耀. 基于PS-InSAR和GIS的北京平原区建筑荷载对地面沉降的影响[J]. 地球信息科学学报, 2016, 18(11): 1551-1562. |
[8] | 朱猛, 董少春, 尹宏伟, 黄璐璐. 基于SBAS InSAR方法的苏州地区2007-2010年地表形变时空变化研究[J]. 地球信息科学学报, 2016, 18(10): 1418-1427. |
[9] | 张雯, 宫辉力, 陈蓓蓓, 段光耀. 北京典型区地面沉降演化特征与成因分析[J]. 地球信息科学学报, 2015, 17(8): 909-916. |
[10] | 熊思婷, 曾琪明, 焦健, 章晓洁. 邻轨PS-InSAR地面沉降结果拼接处理方法与实验[J]. 地球信息科学学报, 2014, 16(5): 797-805. |
[11] | 常占强, 宫辉力. 矿区地面沉降预计方法与应用前景分析[J]. 地球信息科学学报, 2011, 13(2): 151-156. |
|