地球信息科学学报 ›› 2022, Vol. 24 ›› Issue (3): 558-571.doi: 10.12082/dqxxkx. 2022.210361
李晴烁1,2(), 柯长青1,*(
), 张杰2, 范宇宾1, 沈校熠1
收稿日期:
2021-06-29
修回日期:
2021-09-06
出版日期:
2022-03-25
发布日期:
2022-05-25
通讯作者:
*柯长青(1969— ),男,陕西丹凤人,教授,博士生导师,主要从事冰雪遥感研究。E-mail: kecq@nju.edu.cn作者简介:
李晴烁(1997— ),女,黑龙江佳木斯人,硕士生,主要从事冰川物质平衡研究。E-mail: mg1927102@smail.nju.edu.cn
基金资助:
LI Qingshuo1,2(), KE Changqing1,*(
), ZHANG Jie2, FAN Yubin1, SHEN Xiaoyi1
Received:
2021-06-29
Revised:
2021-09-06
Online:
2022-03-25
Published:
2022-05-25
Supported by:
摘要:
格陵兰冰盖是影响全球气候变化的重要因素之一,其微小变化会引起海平面的显著变化,因此定量研究其物质平衡具有重要的科学意义。利用最新发射的ICESat-2卫星激光测高数据(2018年11月至2019年9月),联合ICESat数据(2003年2月至2009年10月),估算2003年2月至2019年9月格陵兰冰盖物质平衡。首先通过交叉点法得到冰盖表面的高程变化,再根据积雪堆积、表面融化和动力变化等物理过程计算密度值,最后经过粒雪含量、冰后回弹和弹性回弹校正计算物质平衡,并针对不同的冰川水文流域进行空间差异性分析。结果表明:① 2003—2019年格陵兰冰盖主体的平均高程变化为-11.27 ± 0.83 cm/yr;② 高程2000 m以下的冰盖呈较大的消融趋势,高程最大消融速率为-6.0 m/yr,总体积变化速率为-206.0 km3/yr, 2000 m以上的冰盖呈上升趋势,高程最大累积率为1.1 m/yr,总体积变化率为14.2 km3/yr;③ 校正后触地冰的总物质平衡为-195.2 ± 13.1 Gt/yr,其中东南部和西北部流域消融量较大,仅有东北部流域呈累积趋势;④ 2003—2019年格陵兰温度整体处于上升趋势,最大变化率为0.8 K/yr,降水在东部和西北部呈下降趋势,最大变化率为-0.1 mm/yr,在一定程度上加速了冰盖消融。
李晴烁, 柯长青, 张杰, 范宇宾, 沈校熠. 基于ICESat和ICESat-2激光测高数据估算2003—2019年格陵兰冰盖物质平衡[J]. 地球信息科学学报, 2022, 24(3): 558-571.DOI:10.12082/dqxxkx. 2022.210361
LI Qingshuo, KE Changqing, ZHANG Jie, FAN Yubin, SHEN Xiaoyi. Estimation of the Mass Balance of Greenland IceSheet from 2003 to 2019 based on ICESat and ICESat-2 Laser Altimetry Data[J]. Journal of Geo-information Science, 2022, 24(3): 558-571.DOI:10.12082/dqxxkx. 2022.210361
表1
2003—2019年格陵兰冰盖各流域体积和质量变化
流域 名称 | 体积变化 /(km3/yr) | 粒雪含量校正 /(km3/yr) | 垂直位移校正 /(km3/yr) | 重力回弹校正 /(km3/yr) | 质量变化/(Gt/yr) | |
---|---|---|---|---|---|---|
子流域 | 流域 | |||||
1.1 | -2.3 ± 0.9 | -4.1 ± 1.4 | 0.3 ± 0.1 | 0.1 ± 0.0 | -5.6 ± 1.7 | -10 ± 2.8 |
1.2 | -0.3 ± 0.9 | -2.3 ± 1.0 | 0.1 ± 0.0 | 0.1 ± 0.0 | -2.3 ± 1.4 | |
1.3 | -0.3 ± 1.2 | -1.4 ± 0.7 | 0.0 ± 0.0 | 0.2 ± 0.0 | -1.4 ± 1.4 | |
1.4 | -0.4 ± 1.1 | -0.5 ± 0.3 | 0.0 ± 0.0 | 0.1 ± 0.0 | -0.7 ± 1.1 | |
2.1 | 6.3 ± 0.9 | -3.6 ± 3.3 | 0.2 ± 0.1 | 0.1 ± 0.0 | 1.8 ± 3.4 | 4.2 ± 3.6 |
2.2 | 3.6 ± 1.0 | -0.5 ± 0.8 | 0.0 ± 0.0 | 0.0 ± 0.0 | 2.4 ± 1.1 | |
3.1 | 1.4 ± 0.8 | 0.7 ± 3.2 | 0.2 ± 0.1 | 0.0 ± 0.0 | 2.0 ± 3.3 | -22.8± 3.8 |
3.2 | -11.8 ± 0.8 | -0.1 ± 1.5 | 0.2 ± 0.0 | 0.0 ± 0.0 | -9.5 ± 1.8 | |
3.3 | -18.2 ± 1.6 | -0.7 ± 2.7 | 0.3 ± 0.1 | 0.0 ± 0.0 | -15.3 ± 3.1 | |
4.1 | -14.8 ± 1.6 | -3.9 ± 2.4 | 0.3 ± 0.1 | 0.0 ± 0.0 | -15.7 ± 2.9 | -37.9 ± 5.5 |
4.2 | -13.3 ± 2.4 | -3.2 ± 2.7 | 0.3 ± 0.1 | 0.0 ± 0.0 | -13.7 ± 3.6 | |
4.3 | -8.4 ± 2.1 | -1.9 ± 1.6 | 0.2 ± 0.0 | 0.0 ± 0.0 | -8.5 ± 2.9 | |
5 | -25.8 ± 1.9 | -16.2 ± 2.4 | 0.5 ± 0.1 | 0.0 ± 0.0 | -36.7 ± 3.1 | -36.7 ± 3.1 |
6.1 | -9.1 ± 2.6 | -2.4 ± 2.1 | 0.2 ± 0.0 | 0.0 ± 0.0 | -9.6 ± 3.3 | -26.5 ± 6.6 |
6.2 | -16.2 ± 1.9 | -4.3 ± 5.4 | 0.6 ± 0.1 | 0.0 ± 0.0 | -16.9 ± 5.7 | |
7.1 | -16.4 ± 1.0 | -2.7 ± 3.0 | 0.4 ± 0.1 | -0.2 ± 0.0 | -15.5 ± 3.1 | -17.5 ± 4.8 |
7.2 | -16.5 ± 1.0 | -1.5 ± 3.5 | 0.5 ± 0.1 | -0.2 ± 0.0 | -2.0 ± 3.7 | |
8.1 | -43.9 ± 1.5 | -6.0 ± 4.0 | 0.9 ± 0.1 | -0.3 ± 0.0 | -40.6 ± 4.3 | -48.0 ± 4.6 |
8.2 | -7.91 ± 1.0 | -1.0 ± 1.3 | 0.1 ± 0.0 | 0.0 ± 0.0 | -7.4 ± 1.6 | |
总计 | -191.74 ± 6.6 | -23.0 ± 11.3 | 5.4 ± 0.3 | 0.5 ± 0.0 | -195.2 ± 13.1 |
[1] |
Bamber J L, Layberry R L, Gogineni S P. A new ice thickness and bed data set for the Greenland ice sheet: 1. Measurement, data reduction, and errors[J]. Journal of Geophysical Research Atmospheres, 2001, 106(D24):33773-33780. DOI: 10.1029/2001jd900054
doi: 10.1029/2001JD900054 |
[2] |
Shepherd A, Ivins E, Rignot E, et al. Mass balance of the Greenland Ice Sheet from 1992 to 2018[J]. Nature, 2020, 579(7798):233-239. DOI: 10.1038/s41586-019-1855-2
doi: 10.1038/s41586-019-1855-2 |
[3] |
Mouginot J, Rignot E, Bjørk A A, et al. Forty-six years of Greenland Ice Sheet mass balance from 1972 to 2018[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(19):9239-9244. DOI: 10.1073/pnas.1904242116
doi: 10.1073/pnas.1904242116 pmid: 31010924 |
[4] | 史红岭, 陆洋, 杜宗亮, 等. 基于ICESat块域分析法探测2003—2008年南极冰盖质量变化[J]. 地球物理学报, 2011, 54(4):958-964. |
[ Shi H L, Lu Y, Du Z L, et al. Mass change detection in Antarctic ice sheet using ICESat block analysis techniques from 2003-2008[J]. Chinese Journal of Geophysics, 2011, 54(4):958-964. ] DOI: 10.3969/j.issn.0001-5733.2011.04.010 | |
[5] |
Markus T, Neumann T, Martino A, et al. The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): Science requirements, concept, and implementation[J]. Remote Sensing of Environment, 2017, 190:260-273. DOI: 10.1016/j.rse.2016.12.029
doi: 10.1016/j.rse.2016.12.029 |
[6] | 李家军. 基于cryosat-2测高数据的格陵兰岛冰盖高程变化研究[D]. 东营:中国石油大学(华东),2015. |
[ Li J J. The research on elevation change of Greenland ice sheet based on cryosat-2 altimeter data[D]. Dongying: China University of Petroleum(Huadong), 2015. ] DOI: CNKI:CDMD:2.1017.809033 | |
[7] | 叶玥, 程晓, 刘岩, 等. 南极和格陵兰冰盖物质平衡研究进展[J]. 极地研究, 2020, 32(4):571-585. |
[ Ye Y E, Cheng X A, Liu Y, et al. Research progress on ice sheet mass balance in Antarctica and Greenland[J]. Chinese Journal of Polar Research, 2020, 32(4):571-585. ] DOI: 10.13679/j.jdyj.20190060 | |
[8] | 黄海兰, 王正涛, 金涛勇, 等. 利用ICESat激光测高数据确定极地冰盖高程变化[J]. 武汉大学学报·信息科学版, 2012, 37(10):1221-1223,1251. |
[ Huang H L, Wang Z T, Jin T Y, et al. Determination of polar ice sheet height change from ICESat altimetry data[J]. Geomatics and Information Science of Wuhan University, 2012, 37(10):1221-1223,1251. ] DOI: 10.13203/j.whugis2012.10.023 | |
[9] |
Slobbe D C, Lindenbergh R C, Ditmar P. Estimation of volume change rates of Greenland's ice sheet from ICESat data using overlapping footprints[J]. Remote Sensing of Environment, 2008, 112(12):4204-4213. DOI: 10.1016/j.rse.2008.07.004
doi: 10.1016/j.rse.2008.07.004 |
[10] |
Sørensen L S, Simonsen S B, Nielsen K, et al. Mass balance of the Greenland ice sheet (2003-2008) from ICESat data - the impact of interpolation, sampling and firn density[J]. The Cryosphere, 2011, 5(1):173-186. DOI: 10.1038/s41586-019-1855-2
doi: 10.5194/tc-5-173-2011 |
[11] | 陈国栋, 张胜军. 利用ICESat数据确定格陵兰冰盖高程和体积变化[J]. 地球物理学报, 2019, 62(7):2417-2428. |
[ Chen G D, Zhang S J. Elevation and volume change determination of Greenland Ice Sheet based on icesat observations[J]. Chinese Journal of Geophysics, 2019, 62(7):2417-2428. ] DOI: 10.6038/cjg2019M0170 | |
[12] | 杨帆, 温家洪. ICESat与ICESat-2应用进展与展望[J]. 极地研究, 2011, 23(2):138-148. |
[ Yang F, Wen J H. Icesat and icesat-2 applications: Progress and prospect[J]. Chinese Journal of Polar Research, 2011, 23(2):138-148. ] DOI: 10.3724/SP.J.1084.2011.00138 | |
[13] | 安德笼, 杨进, 武永斌, 等. ICESat-2激光测高卫星应用研究进展[J]. 海洋测绘, 2019, 39(6):9-15. |
[ An D L, Yang J, Wu Y B, et al. Current research progress and applications of ICESat-2 laser altimetry satellite[J]. Hydrographic Surveying and Charting, 2019, 39(6):9-15. ] DOI: 10.3969/jssn.1671-3044.2019.06.003 | |
[14] | 杨康. 格陵兰冰盖表面融水存储、输送与释放遥感研究[D]. 南京:南京大学, 2014. |
[ Yang K. Understanding Greenland ice sheet supraglacial hydrology using a remotely sensed approach[D]. Nanjing: Nanjing University, 2014. ] | |
[15] |
Zwally H J, Li J, Brenner A C, et al. Greenland ice sheet mass balance: Distribution of increased mass loss with climate warming; 2003-07 versus 1992-2002[J]. Journal of Glaciology, 2011, 57(201):88-102. DOI: 10.3189/002214311795306682
doi: 10.3189/002214311795306682 |
[16] | Claire P, Paul M, Ian H, et al. “ArcticDEM”, Harvard Dataverse, V1[EB/OL]. [2020-06-30].https://www.pgc.umn.edu/data/arcticdem |
[17] |
Zwally H J, Schutz B, Abdalati W, et al. ICESat's laser measurements of polar ice, atmosphere, ocean, and land[J]. Journal of Geodynamics, 2002, 34(3):405-445. DOI: 10.1016/S0264-3707(02)00042-X
doi: 10.1016/S0264-3707(02)00042-X |
[18] | Zwally H J, Schutz R, Bentley C, et al. GLAS/ICESat L2 Global Antarctic and Greenland Ice Sheet Altimetry Data (HDF5), Version 34. [GLA 12].National Snow and Ice Data Center[EB/OL]. [2019-12-30]. https://nsidc.org/data/glah12s |
[19] | Kwok R, Cunningham G F, Zwally H J, et al. ICESat over Arctic sea ice: Interpretation of altimetric and reflectivity profiles[J]. Journal of Geophysical Research: Oceans, 2006, 111(C6):C06006. DOI: 10.1029/2005JC003175 |
[20] |
Smith B, Fricker H A, Gardner A S, et al. Pervasive ice sheet mass loss reflects competing ocean and atmosphere processes[J]. Science, 2020, 368(6496):1239-1242. DOI: 10.1126/science.aaz5845
doi: 10.1126/science.aaz5845 pmid: 32354841 |
[21] |
McGill M, Markus T, Scott V S, et al. The multiple altimeter beam experimental lidar (MABEL): An airborne simulator for the ICESat-2 mission[J]. Journal of Atmospheric and Oceanic Technology, 2013, 30(2):345-352. DOI: 10.1175/JTECH-D-12-00076.1
doi: 10.1175/JTECH-D-12-00076.1 |
[22] | Pritchard H D, Arthern R J, Vaughan D G, et al. Extensive dynamic thinning on the margins of the Greenland and Antarctic ice sheets[J]. Nature: International weekly journal of science, 2009, 461(7266):971-975. DOI: 10. 1038/nature08471 |
[23] | Smith B, Fricker H A, Gardner A, et al. ATLAS/ICESat-2 L3A Land Ice Height, Version 4. [ATL06].National Snow and Ice Data Center[EB/OL]. [2019-12-30]. https://nsidc.org/data/atl06/versions/4 |
[24] | Smith B, Fricker H A, Holschuh N, et al. Land ice height-retrieval algorithm for NASA's ICESat-2 photon-counting laser altimeter[J]. Remote Sensing of Environment, 2019, 233(11352):1-17. DOI: 10.1016/j.rse.2019.111352 |
[25] | Hersbach H, Bell B, Berrisford P, et al. ERA5 monthly averaged data on pressure levels from 1979 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [EB/OL]. [2021-07-20]. https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels-monthly-means |
[26] |
Delhasse A, Fettweis X, Kittel C, et al. Brief communication: Impact of the recent atmospheric circulation change in summer on the future surface mass balance of the Greenland Ice Sheet[J]. The Cryosphere, 2018, 12(11):3409-3418. DOI: 10.5194/tc-12-3409-2018
doi: 10.5194/tc-12-3409-2018 |
[27] | Fettweis X, Box J E, Agosta C, et al. Reconstructions of the 1900-2015 Greenland ice sheet surface mass balance using the regional climate MAR model[J]. Cryosphere Discussions, 2017, 11(2):1-32. DOI: 10.5194/tc-11-1015-2017 |
[28] | 张栋. 基于ICESat和冰雷达数椐的南极Lambert冰川流域冰盖特征提取研究[D]. 南京:南京大学, 2013. |
[ Zhang D. Research on ice sheet feature extraction of lambert glacier drainage basin,Antarctica based on ICESat and ice radar data[D]. Nanjing: Nanjing University, 2013. ] | |
[29] | 陈国栋. 利用ICESat数据确定北极冰雪消融方法的研究[D]. 武汉大学, 2015. |
[ Chen G D. Study on The Methodology of Determining Ice and Snow Melting in Arctic Using ICESat Data[D]. Wuhan University, 2015. ] | |
[30] | 张震. 基于ICEsat GLAS东帕米尔高原冰川物质平衡监测[J]. 伊犁师范学院学报(自然科学版), 2018, 12(2):42-48. |
[ Zhang Z. Glacier mass changes on the eastern Pamir plateau derived from ICESat GLAS data[J]. Journal of Yili Normal University (Natural Science Edition), 2018, 12(2):42-48. ] DOI: 10.3969/j.issn.1673-999X.2018.02.008 | |
[31] |
Shen X Y, Ke C Q, Yu X N, et al. Evaluation of Ice, Cloud, And Land Elevation Satellite-2 (ICESat-2) land ice surface heights using Airborne Topographic Mapper (ATM) data in Antarctica[J]. International Journal of Remote Sensing, 2021, 42(7):2556-2573. DOI: 10.1080/01431161.2020.1856962
doi: 10.1080/01431161.2020.1856962 |
[32] | 韩少帅. 2010-2019年南极冰盖的高程变化与物质平衡[D]. 南京:南京大学, 2020. |
[ Han S S. Elevation change and mass balance of the Antarctic ice sheet from 2010 to 2019[D]. Nanjing: Nanjing University, 2020. ] | |
[33] | Brenner A C, Dimarzio J P, Zwally H J. Precision and Accuracy of Satellite Radar and Laser Altimeter Data Over the Continental Ice Sheets[J]. IEEE Transactions on Geoscience & Remote Sensing, 2007, 45(2):321-331. DOI: 10. 1109/TGRS.2006.887172 |
[34] | 陈国栋, 王鹏, 赵伟. 基于交叉点不符值的ICESat冰盖测高精度估计[J]. 测绘科学技术学报, 2018, 35(3):226-230. |
[ Chen G D, Wang P, Zhao W. Accuracy estimation of ICESat altimetry over ice sheet based on crossover differences[J]. Journal of Geomatics Science and Technology, 2018, 35(3):226-230. ] DOI: 10.3969/j.issn.1673-6338.2018.03.002 | |
[35] |
Wingham D J, Ridout A J, Scharroo R, et al. Antarctic Elevation Change from 1992 to 1996[J]. Science, 1998, 282(5388):456-458. DOI: 10.1126/science.282.5388.456
pmid: 9774268 |
[36] | Bolch T, Sørensen L S, Simonsen S B, et al. Mass loss of Greenland's glaciers and ice caps 2003-2008 revealed from ICESat laser altimetry data[J]. John Wiley & Sons, Ltd, 2013, 40(5):875-881. DOI: 10.1002/grl.50270 |
[37] |
Zwally H J, Li J, Brenner A C, et al. Greenland ice sheet mass balance: Distribution of increased mass loss with climate warming; 2003-07 versus 1992-2002[J]. Journal of Glaciology, 2011, 57(201):88-102. DOI: 10.3189/002214311795306682
doi: 10.3189/002214311795306682 |
[38] | Thomas R, Frederick E, Krabill W, et al. Progressive increase in ice loss from Greenland[J]. Geophysical Research Letters, 2006, 33(10):L10503. DOI: 10.1029/2006GL026075 |
[39] |
Reeh N, Fisher D A, Koerner R M, et al. An empirical firn-densification model comprising ice-lences[J]. Annals of Glaciology, 2005, 42(1):101-106. DOI: 10.3189/172756405781812871
doi: 10.3189/172756405781812871 |
[40] | 韩少帅, 柯长青, 夏文韬. 基于CryoSat-2雷达高度计数据的南极内陆冰盖高程变化与物质平衡[J]. 冰川冻土, 2019, 41(1):19-26. |
[ Han S S, Ke C Q, Xia W T. Change of surface elevation and mass balance in Antarctic ice sheet based on CryoSat-2 radar altimeter data[J]. Journal of Glaciology and Geocryology, 2019, 41(1):19-26. ] DOI: 10.7522/j.issn.1000-0240.2018.0505 | |
[41] |
Verjans V, Leeson A A, Stevens C M, et al. Development of physically based liquid water schemes for Greenland firn-densification models[J]. The Cryosphere, 2019, 13(7):1819-1842. DOI: 10.5194/tc-13-1819-2019
doi: 10.5194/tc-13-1819-2019 |
[42] |
Peltier W R, Argus D F, Drummond R. Comment on "An Assessment of the ICE‐6G_C (VM5a) Glacial Isostatic Adjustment Model" by Purcell et al.[J]. Journal of Geophysical Research: Solid Earth, 2018, 123:2019-2028. DOI: 10.1002/2016JB013844
doi: 10.1002/jgrb.v123.2 |
[43] |
Simpson M J R, Milne G A, Huybrechts P, et al. Calibrating a glaciological model of the Greenland ice sheet from the Last Glacial Maximum to present-day using field observations of relative sea level and ice extent[J]. Quaternary Science Reviews, 2009, 28(17/18):1631-1657. DOI: 10.1016/j.quascirev.2009.03.004
doi: 10.1016/j.quascirev.2009.03.004 |
[44] |
Dziewonski A M, Anderson D L. Preliminary reference Earth model[J]. Physics of the Earth and Planetary Interiors, 1981, 25(4):297-356. DOI: 10.1016/0031-9201(81)90046-7
doi: 10.1016/0031-9201(81)90046-7 |
[45] | Hilary R. Martens, Luis Rivera, Mark Simons. LoadDef: A Python‐Based Toolkit to Model Elastic Deformation Caused by Surface Mass Loading on Spherically Symmetric Bodies. 2019, 6(2):311-323. DOI: 10.1029/2018EA000462 |
[46] |
Csatho B M, Schenk A F, van der Veen C J, et al. Laser altimetry reveals complex pattern of Greenland Ice Sheet dynamics[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(52):18478-18483. DOI: 10.1073/pnas.1411680112
doi: 10.1073/pnas.1411680112 pmid: 25512537 |
[47] |
Joughin I, Smith B E, Howat I M, et al. Greenland flow variability from ice-sheet-wide velocity mapping[J]. Journal of Glaciology, 2010, 56(197):415-430. DOI: 10.3189/002214310792447734
doi: 10.3189/002214310792447734 |
[48] |
Helm V, Humbert A, Miller H. Elevation and elevation change of Greenland and Antarctica derived from CryoSat-2[J]. The Cryosphere, 2014, 8(4):1539-1559. DOI: 10.5194/tc-8-1539-2014
doi: 10.5194/tc-8-1539-2014 |
[49] |
Nick F M, Vieli A, Andersen M L, et al. Future sea-level rise from Greenland's main outlet glaciers in a warming climate[J]. Nature, 2013, 497(7448):235-238. DOI: 10.1038/natrue12068
doi: 10.1038/nature12068 |
[50] | Ren J F, Alley R B, Allison I, et al. Observations: Changes in Snow, Ice and Frozen Ground[M]. Changes, 2007:336-383. |
[51] | 冯贵平, 王其茂, 宋清涛. 基于GRACE卫星重力数据估计格陵兰岛冰盖质量变化[J]. 海洋学报, 2018, 40(11):73-84. |
[ Feng G P, Wang Q M, Song Q T. Greenland ice sheet mass variations based on Grace satellite gravity data[J]. Haiyang Xuebao, 2018, 40(11):73-84. ] DOI: 10.3969/j.issn.0253-4193.2018.11.008 | |
[52] |
Luthcke S B, Zwally H J, Abdalati W, et al. Recent Greenland Ice Mass Loss by Drainage System from Satellite Gravity Observations[J]. Science, 2006, 314(5803):1286-1289.
pmid: 17053112 |
Luthcke S B, Zwally H J, Abdalati W, et al. Recent Greenland ice mass loss by drainage system from satellite gravity observations[J]. Science, 2006, 314(5803):1286-1289.DOI: 10.1126/science.1130776 | |
[53] |
Fahnestock M, Abdalati W, Joughin I, et al. High geothermal heat flow, basal melt, and the origin of rapid ice flow in central Greenland[J]. Science, 2001, 294(5550):2338-2342. DOI: 10.1126/science.1065370
pmid: 11743197 |
[54] |
Abdalati W, Krabill W, Frederick E, et al. Outlet glacier and margin elevation changes: Near-coastal thinning of the Greenland ice sheet[J]. Journal of Geophysical Research: Atmospheres, 2001, 106(D24):33729-33741. DOI: 10.1029/2001JD900192
doi: 10.1029/2001JD900192 |
[55] | 高瑀, 王正涛, 李夫鹏, 超能芳. 联合GRACE、Swarm、GRACE-FO卫星观测确定格陵兰岛冰盖质量时空变化特征[J]. 地球物理学报, 2021, 64(7):2405-2416. |
[ Gao Y, Wang Z T, Li Fu P, et al. The Spatio-temporal feature of Greenland mass changes as determined by GRACE, Swarm, and GRACE-Fo[J]. Chinese Journal of Geophysics, 2021, 64(7):2405-2416. ] DOI: 10.6038/cjg2021O0289 | |
[56] | 丁锴. 全新世全球温度千年尺度变化的特征与成因分析[D]. 南京:南京师范大学, 2019. |
[ Ding K. Analysis on the characteristics and causes of global Holocene temperature variation on millennial time scale[D]. Nanjing Normal University, 2019. ] DOI: 10.27245/d.cnki.gnjsu.2019.000791 | |
[57] |
Hanna E, Fettweis X, Mernild S H, et al. Atmospheric and oceanic climate forcing of the exceptional Greenland Ice Sheet surface melt in summer 2012[J]. International Journal of Climatology, 2014, 34(4):1022-1037. DOI: 10.1002/joc.3743
doi: 10.1002/joc.3743 |
[1] | 杨帅, 杨娜, 陈传法, 常兵涛, 高原, 郑婷婷. 顾及数据配准的江西省SRTM DEM精度评价和修正[J]. 地球信息科学学报, 2021, 23(5): 869-881. |
[2] | 於佳宁, 刘凯, 张冰玥, 黄滢, 范晨雨, 宋春桥, 汤国安. 中国区域TanDEM-X 90 m DEM高程精度评价及其适用性分析[J]. 地球信息科学学报, 2021, 23(4): 646-657. |
[3] | 陆大进, 黎东, 朱笑笑, 聂胜, 周国清, 张兴忆, 杨超. 基于卷积神经网络的ICESat-2光子点云去噪分类[J]. 地球信息科学学报, 2021, 23(11): 2086-2095. |
[4] | 秦臣臣, 陈传法, 杨娜, 高原, 王梦樱. 基于ICESat/GLAS的山东省SRTM与ASTER GDEM高程精度评价与修正[J]. 地球信息科学学报, 2020, 22(3): 351-360. |
[5] | 李文梁, 汪驰升, 朱武. 中国大陆地区TanDEM-X 90 m DEM误差空间分布特征[J]. 地球信息科学学报, 2020, 22(12): 2277-2288. |
[6] | 张震, 刘时银. 1970-2016年青藏高原岗扎日冰川变化与物质平衡遥感监测研究[J]. 地球信息科学学报, 2018, 20(9): 1338-1349. |
[7] | 武文娇, 章诗芳, 赵尚民. SRTM1 DEM与ASTER GDEM V2数据的对比分析[J]. 地球信息科学学报, 2017, 19(8): 1108-1115. |
[8] | 马明亮, 王超, 施润和, 高炜. 嫦娥一号IIM高光谱数据和月球轨道器LOLA DEM数据的配准与月表地形校正及评价[J]. 地球信息科学学报, 2015, 17(1): 118-125. |
|