地球信息科学学报 ›› 2021, Vol. 23 ›› Issue (8): 1508-1523.doi: 10.12082/dqxxkx.2021.200660
收稿日期:
2020-11-03
修回日期:
2021-01-28
出版日期:
2021-08-25
发布日期:
2021-10-25
通讯作者:
王竞雪
作者简介:
张鑫(1997— ),女,山西临汾人,硕士生,主要从事遥感影像密集匹配理论与方法研究。E-mail: 1454579518@qq.com
基金资助:
ZHANG Xin1(), WANG Jingxue1,2,*(
), LIU Suyan1, GAO Song1
Received:
2020-11-03
Revised:
2021-01-28
Online:
2021-08-25
Published:
2021-10-25
Contact:
WANG Jingxue
Supported by:
摘要:
针对现有由稀到密的加密匹配算法中,初始匹配点可靠性低将导致迭代匹配拓展过程存在较多误匹配的问题,提出一种基于可靠匹配点约束的遥感影像密集匹配算法。首先,利用SIFT匹配点约束直线匹配获得的同名直线构建虚拟匹配点集,结合虚拟匹配点集和SIFT匹配点集建立初始匹配点集;然后,依次采用局部影像信息和局部几何约束对初始匹配点集进行检核剔除错误匹配,主要体现在利用指纹信息和梯度信息构建匹配点局部区域约束剔除较为明显的误匹配点,利用匹配三角网构建局部几何约束剔除由相似纹理产生的误匹配点,得到优化后的可靠匹配点;最后,基于可靠匹配点构建的Delaunay三角网,以三角形重心为加密匹配基元,结合核线约束和仿射变换对其进行迭代匹配拓展,得到最终匹配点集。选取4组资源三号卫星前视数据和后视数据进行实验,结果表明:利用局部纹理特征和局部几何双重约束模型可有效剔除误匹配点得到可靠匹配点,通过可靠匹配点进行迭代匹配拓展得到的密集匹配结果相较于对比算法具有更高匹配精度,在4组数据上其平均匹配精度为95%,具有较好的匹配稳定性。
张鑫, 王竞雪, 刘肃艳, 高嵩. 基于可靠匹配点约束的遥感影像密集匹配[J]. 地球信息科学学报, 2021, 23(8): 1508-1523.DOI:10.12082/dqxxkx.2021.200660
ZHANG Xin, WANG Jingxue, LIU Suyan, GAO Song. A Dense Matching Algorithm for Remote Sensing Images based on Reliable Matched Points Constraint[J]. Journal of Geo-information Science, 2021, 23(8): 1508-1523.DOI:10.12082/dqxxkx.2021.200660
表2
不同阈值下纹理特征约束参数分析表
Tgh | λ=0.1 | λ=0.2 | λ=0.3 | λ=0.4 | λ=0.5 | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Imatch/对 | Icor/对 | Iacc | Imatch/对 | Icor/对 | Iacc | Imatch/对 | Icor/对 | Iacc | Imatch/对 | Icor/对 | Iacc | Imatch/对 | Icor/对 | Iacc | |||||
0.75 | 2591 | 133 | 0.05 | 2592 | 240 | 0.09 | 2591 | 305 | 0.11 | 2591 | 99 | 0.03 | 2585 | 89 | 0.03 | ||||
0.80 | 2595 | 280 | 0.10 | 2596 | 444 | 0.17 | 2593 | 480 | 0.19 | 2587 | 219 | 0.08 | 2588 | 188 | 0.07 | ||||
0.85 | 2592 | 702 | 0.27 | 2592 | 753 | 0.29 | 2597 | 816 | 0.31 | 2590 | 534 | 0.20 | 2589 | 482 | 0.19 | ||||
0.90 | 2586 | 1786 | 0.69 | 2599 | 1996 | 0.76 | 2622 | 2170 | 0.80 | 2586 | 1691 | 0.65 | 2588 | 1609 | 0.62 | ||||
0.95 | 2374 | 2190 | 0.92 | 2379 | 2210 | 0.93 | 2367 | 2225 | 0.94 | 2398 | 2221 | 0.93 | 2449 | 2271 | 0.92 |
表5
不同算法在不同阈值下密集匹配结果比较
T1 | 文献[ | r | 文献[ | Ts | 本文算法 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Imatch/对 | Icor/对 | Iacc | Imatch/对 | Icor/对 | Iacc | Imatch/对 | Icor/对 | Iacc | |||
85 | 1584 | 1251 | 0.78 | 15 | 1506 | 1451 | 0.96 | 80 | 1449 | 1423 | 0.98 |
53 | 2569 | 1987 | 0.76 | 20 | 2907 | 2803 | 0.96 | 50 | 2438 | 2366 | 0.97 |
20 | 6358 | 4810 | 0.75 | 30 | 6198 | 5984 | 0.96 | 18 | 6409 | 6287 | 0.98 |
15 | 8385 | 6478 | 0.77 | 45 | 8194 | 7817 | 0.95 | 14 | 8241 | 8082 | 0.98 |
表6
不同算法实验结果比较
数据 | 文献[ | 文献[ | 本文算法 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Imatch/对 | Icor/对 | Iacc | Times/s | Imatch/对 | Icor/对 | Iacc | Times/s | Imatch/对 | Icor/对 | Iacc | Times/s | |||
第1组 | 2577 | 1933 | 0.75 | 25 | 6466 | 5341 | 0.82 | 98 | 2490 | 2283 | 0.91 | 68 | ||
第2组 | 2455 | 2055 | 0.83 | 24 | 1479 | 1325 | 0.89 | 77 | 2482 | 2403 | 0.97 | 65 | ||
第3组 | 2569 | 1987 | 0.76 | 26 | 2907 | 2803 | 0.96 | 85 | 2438 | 2387 | 0.98 | 65 | ||
第4组 | 2218 | 1796 | 0.81 | 21 | 2318 | 2109 | 0.91 | 84 | 2175 | 2068 | 0.95 | 47 | ||
均值统计 | 2454 | 1618 | 0.79 | 24 | 3292 | 2894 | 0.90 | 86 | 2396 | 2285 | 0.95 | 61 |
[1] | Marr D, Poggio T. A computational theory of human stereo vision[J]. Proceedings of the Royal Society of London, 1979, 204(1156):301-328. |
[2] |
Mayhew J E W, Frisby J P. Psychophysical and computational studies towards a theory of human stereopsis[J]. Artificial Intelligence, 1981, 17(1-3):349-385.
doi: 10.1016/0004-3702(81)90029-1 |
[3] | 凌霄. 基于多重约束的多源光学卫星影像自动匹配方法研究[D]. 武汉:武汉大学, 2017. |
[Ling X. Automatic matching of multi-sources optical satellite images based on multiple constraints[D]. Wuhan: Wuhan University, 2017. ] | |
[4] | 马方龙. 基于归一化积相关匹配的彩色图像灰度化研究[D]. 兰州:兰州大学, 2018. |
[Ma F L. Research on color-to-gray conversion based on normalized cross correlation[D]. Lanzhou: Lanzhou University, 2018. ] | |
[5] |
杨佳宾, 姜永涛, 杨幸彬, 等. 基于Dense SIFT特征的无人机影像快速拼接方法[J]. 地球信息科学学报, 2019, 21(4):588-599.
doi: 10.12082/dqxxkx.2019.190001 |
[Yang J B, Jiang Y T, Yang X B, et al. A fast mosaic algorithm of UAV images based on dense SIFT feature matching[J]. Journal of Geo-information Science, 2019, 21(4):588-599. ] | |
[6] |
Masry S E. An automatic method for height profile determination[J]. The Photogrammetric Record, 2006, 7(42):728-730.
doi: 10.1111/j.1477-9730.1973.tb01212.x |
[7] | Hel-Or Y, Hel-Or H, David E. Fast template matching in non-linear tone-mapped images[C]// 2011 International Conference on Computer Vision. IEEE, 2011:1355-1362. |
[8] | Wang C, Wan T R, Palmer I J. A real-time dynamic simulation scheme for large-scale flood hazard using 3D real world data[C]// 2007 11th International Conference Information Visualization (IV '07). IEEE, 2007:607-612. |
[9] | 施颖琦, 顾力栩. 基于互信息多步骤优化的医学图像配准[J]. 计算机工程, 2006, 32(22):187-188. |
[Shi Y Q, Gu L X. Optimized multistage medical image registration method based on mutual information[J]. Computer Engineering, 2006, 32(22):187-188. ] | |
[10] |
Valgren C, Lilienthal A J. SIFT, SURF & seasons: Appearance-based long-term localization in outdoor environments[J]. Robotics and Autonomous Systems, 2010, 58(2):149-156.
doi: 10.1016/j.robot.2009.09.010 |
[11] |
Vijayan V, Kp P. A comparative analysis of RootSIFT and SIFT methods for drowsy features extraction[J]. Procedia Computer Science, 2020, 171:436-445.
doi: 10.1016/j.procs.2020.04.046 |
[12] |
Lowe D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2):91-110.
doi: 10.1023/B:VISI.0000029664.99615.94 |
[13] |
姜文聪, 张继贤, 程春泉, 等. SIFT与粗差剔除算法相结合的机载SAR影像匹配研究[J]. 地球信息科学学报, 2013, 15(3):440-445.
doi: 10.3724/SP.J.1047.2013.00440 |
[Jiang W C, Zhang J X, Cheng C Q, et al. Matching of airborne SAR images based on a combination of SIFT algorithm with mismatching points eliminated algorithm[J]. Journal of Geo-information Science, 2013, 15(3):440-445. ] | |
[14] |
Fischler M A, Bolles R C. Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography[J]. Communications of the ACM, 1981, 24(6):381-395.
doi: 10.1145/358669.358692 |
[15] | Chum O, Matas J. Matching with PROSAC - progressive sample consensus[C]// 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05). IEEE, 2005:220-226. |
[16] |
Raguram R, Chum O, Pollefeys M, et al. USAC: A universal framework for random sample consensus[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(8):2022-2038.
doi: 10.1109/TPAMI.2012.257 pmid: 23787350 |
[17] | Sattler T, Leibe B, Kobbelt L. SCRAMSAC: Improving RANSAC's efficiency with a spatial consistency filter[C]// 2009 IEEE 12th International Conference on Computer Vision. IEEE, 2009:2090-2097. |
[18] | Liu Z, Marlet R. Virtual line descriptor and semi-local graph matching method for reliable feature correspondence[C]// Procedings of the British Machine Vision Conference 2012. British Machine Vision Association, 2012:1-11. |
[19] | Hu H, Zhu Q, Du Z Q, et al. Reliable spatial relationship constrained feature point matching of oblique aerial images[J]. Photogrammetric Engineering & Remote Sensing, 2015, 81(1):49-58. |
[20] | Li J Y, Hu Q W, Ai M Y. 4FP-structure: A robust local region feature descriptor[J]. Photogrammetric Engineering & Remote Sensing, 2017, 83(12):813-826. |
[21] | 李建晔. 点、线结合下的多源高分辨率遥感影像匹配[D]. 阜新:辽宁工程技术大学, 2012. |
[Li J Y. The matching of Multi-source high resolution image based on points and lines[D]. Fuxin: Liaoning Technical University, 2012. ] | |
[22] | 刘肃艳, 王竞雪. 结合同名点及核线约束的近景影像直线匹配[J]. 测绘科学, 2019, 44(10):128-135. |
[Liu S Y, Wang J X. Line matching for close-range images by combining corresponding points and epipolar constraint[J]. Science of Surveying and Mapping, 2019, 44(10):128-135. ] | |
[23] | 梁艳, 盛业华, 张卡, 等. 利用局部仿射不变及核线约束的近景影像直线特征匹配[J]. 武汉大学学报·信息科学版, 2014, 39(2):229-233. |
[Liang Y, Sheng Y H, Zhang K, et al. Linear feature matching method based on local affine invariant and epipolar constraint for close-range images[J]. Geomatics and Information Science of Wuhan University, 2014, 39(2):229-233. ] | |
[24] | 鲜翠琼, 秦学, 朱道恒, 等. 一种图文组合相似度算法的设计与优化[J]. 软件工程, 2020, 23(8):9-12. |
[Xian C Q, Qin X, Zhu D H, et al. Design and optimization of a similarity algorithm for combination of graphics and text[J]. Software Engineering. 2020, 23(8):9-12. ] | |
[25] |
Jain P, Dixit V S. Proposed similarity measure using Bhattacharyya coefficient for context aware recommender system[J]. Journal of Intelligent and Fuzzy Systems, 2018, 36(5):1-12.
doi: 10.3233/JIFS-17063 |
[26] |
Jiang S, Jiang W S. Reliable image matching via photometric and geometric constraints structured by Delaunay triangulation[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 153:1-20.
doi: 10.1016/j.isprsjprs.2019.04.006 |
[27] | Nguyen H V, Bai L. Cosine similarity metric learning for face verification[C]. Computer Vision-ACCV 2010, Lecture Notes in Computer Science, 2010:709-720. |
[28] | 张卡, 盛业华, 叶春. 基于数字视差模型和改进SIFT特征的数字近景立体影像匹配[J]. 测绘学报, 2010, 39(6):624-630. |
[Zhang K, Sheng Y H, Ye C. Digital close-range stereo image matching based on digital parallax model and improved SIFT feature[J]. Acta Geodaetica et Cartographica Sinica, 2010, 39(6):624-630. ] | |
[29] | 吴波. 自适应三角形约束下的立体影像可靠匹配方法[D]. 武汉:武汉大学, 2006. |
[Wu B. A reliable stereo image matching method based on the self-adaptive triangle constraint[D]. WuHan: WuHan University, 2006. ] | |
[30] | 王竞雪, 张晶, 张雪. 迭代三角网约束的近景影像密集匹配[J]. 信号处理, 2018, 34(3):347-356. |
[Wang J X, Zhang J, Zhang X. A dense matching algorithm of close-range images constrained by iterative triangle network[J]. Journal of Signal Processing, 2018, 34(3):347-356. ] | |
[31] | 自然资源部国土卫星遥感应用中心. 自然资源卫星影像云服务平台[DB/OL]. http://sasclouds.com/chinese/normal/. |
[Land Satellite Remote Sensing Application Center, Ministry of Natural Resources. The Cloud Service Platform of Natural Resources Satellite Images[DB/OL]. http://sasclouds.com/chinese/normal/.] | |
[32] | 欧阳欢, 范大昭, 纪松, 等. 结合离散化描述与同名点约束的线特征匹配[J]. 测绘学报, 2018, 47(10):1363-1371. |
[OuY H, Fan D Z, Ji S, et al. Line matching based on discrete description and conjugate point constrain[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(10):1363-1371. ] | |
[33] |
Jia D, Wu S, Zhao M Y. Dense matching for wide baseline images based on equal proportion of triangulation[J]. Electronics Letters, 2019, 55(7):380-382.
doi: 10.1049/el.2018.7659 |
[1] | 戴俊杰, 董婧雯, 杨晟, 孙毅中. 基于空间突变特征的城市边缘区提取方法[J]. 地球信息科学学报, 2021, 23(8): 1401-1421. |
[2] | 张春森, 贾欣, 吴蓉蓉, 崔卫红, 史书, 郭丙轩. 面向对象高分遥感影像典型自然地物半自动提取[J]. 地球信息科学学报, 2021, 23(6): 1050-1062. |
[3] | 唐璎, 刘正军, 杨懿, 顾海燕, 杨树文. 基于特征增强和ELU的神经网络建筑物提取研究[J]. 地球信息科学学报, 2021, 23(4): 692-709. |
[4] | 朱盼盼, 李帅朋, 张立强, 李洋. 基于多任务学习的高分辨率遥感影像建筑提取[J]. 地球信息科学学报, 2021, 23(3): 514-523. |
[5] | 郭紫甜, 王春梅, 刘欣, 庞国伟, 朱梦阳, 王晋卿. 基于小流域抽样单元的中国FROM-GLC30数据精度评价[J]. 地球信息科学学报, 2021, 23(3): 524-535. |
[6] | 何腕营, 王竞雪. 基于直线间几何属性特征相似性约束的组直线匹配算法[J]. 地球信息科学学报, 2020, 22(9): 1766-1778. |
[7] | 赵青松, 兰安军, 范泽孟, 杨青. 贵州省不同地貌形态类型土壤侵蚀强度变化的定量分析[J]. 地球信息科学学报, 2020, 22(7): 1555-1566. |
[8] | 赵尚民, 程维明, 蒋经天, 沙文娟. 资源三号卫星DEM数据与全球开放DEM数据的误差对比[J]. 地球信息科学学报, 2020, 22(3): 370-378. |
[9] | 何红术, 黄晓霞, 李红旮, 倪凌佳, 王新歌, 陈崇, 柳泽. 基于改进U-Net网络的高分遥感影像水体提取[J]. 地球信息科学学报, 2020, 22(10): 2010-2022. |
[10] | 郭子慧, 刘伟. 深度学习和遥感影像支持的矢量图斑地类解译真实性检查方法[J]. 地球信息科学学报, 2020, 22(10): 2051-2061. |
[11] | 吴瑞娟, 何秀凤, 王静. 结合像元级与对象级的滨海湿地变化检测方法[J]. 地球信息科学学报, 2020, 22(10): 2078-2087. |
[12] | 蔡博文,王树根,王磊,邵振峰. 基于深度学习模型的城市高分辨率遥感影像 不透水面提取[J]. 地球信息科学学报, 2019, 21(9): 1420-1429. |
[13] | 王兴,康俊锋,刘学军,王美珍,张超. 设施农业典型地物改进Faster R-CNN识别方法[J]. 地球信息科学学报, 2019, 21(9): 1444-1454. |
[14] | 李泽宇,明冬萍,范莹琳,赵林峰,刘思民. 遥感影像监督分割评价指标比较与分析[J]. 地球信息科学学报, 2019, 21(8): 1265-1274. |
[15] | 张刚, 刘文彬, 张男. 基于区域特征分割的密集匹配点云渐进形态学滤波[J]. 地球信息科学学报, 2019, 21(4): 615-622. |
|