[1] |
廖小罕, 肖青, 张颢. 无人机遥感:大众化与拓展应用发展趋势[J]. 遥感学报, 2019, 23(6):1046-1052.
|
|
[ Liao X H, Xiao Q, Zhang H. UAV remote sensing: Popularization and expand application development trend[J]. Journal of Remote Sensing, 2019, 23(6):1046-1052. ] DOI: 10.11834/jrs.20199422
|
[2] |
王一达, 沈熙玲, 谢炯, 等. 遥感图像分类方法研究综述[J]. 遥感信息, 2006, 21(5):67-71.
|
|
[ Wang Y D, Shen X L, Xie J, et al. A review of remote sensing image classification method[J]. Remote Sensing Information, 2006, 21(5):67-71. ] DOI: 10.3969/j.issn.1000-3177.2006.05.021
|
[3] |
骆剑承, 王钦敏, 马江洪, 等. 遥感图像最大似然分类方法的EM改进算法[J]. 测绘学报, 2002, 31(3):234-239.
|
|
[ Luo J C, Wang Q M, Ma J H, et al. The EM-based maximum likelihood classifier for remotely sensed data[J]. Acta Geodaetica et Cartographic Sinica, 2002, 31(3):234-239. ] DOI: 10.3321/j.issn:1001-1595.2002.03.010
|
[4] |
朱建华, 刘政凯, 俞能海. 一种多光谱遥感图象的自适应最小距离分类方法[J]. 中国图象图形学报, 2000, 5(1):24-27.
|
|
[ Zhu J H, Liu Z K, Yu N H. Remote sensing image classification using an adaptive min-distance algorithm[J]. Journal of Image and Graphics, 2000, 5(1):24-27. ] DOI: 10.11834/jig.20000105
|
[5] |
张锦水, 何春阳, 潘耀忠, 等. 基于SVM的多源信息复合的高空间分辨率遥感数据分类研究[J]. 遥感学报, 2006, 10(1):49-57.
|
|
[ Zhang J S, He C Y, Pan Y Z, et al. The high spatial resolution RS image classification based on SVM method with the multi-source data[J]. Journal of Remote Sensing, 2006, 10(1):49-57. ] DOI: 10.3321/j.issn:1007-4619.2006.01.008
|
[6] |
王慧贤, 靳惠佳, 王娇龙, 等. k均值聚类引导的遥感影像多尺度分割优化方法[J]. 测绘学报, 2015, 44(5):526-532.
|
|
[ Wang H X, Jin H J, Wang J L, et al. Optimization approach for multi-scale segmentation of remotely sensed imagery under k-means clustering guidance[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(5):526-532. ] DOI: 10.11947/j.AGCS.2015.20130497
|
[7] |
沈照庆, 舒宁, 龚衍, 等. 基于改进模糊ISODATA算法的遥感影像非监督聚类研究[J]. 遥感信息, 2008, 23(5):28-32.
|
|
[ Shen Z Q, Shu N, Gong Y, et al. Study on the supervised classification of remote sensing image based on a modified fuzzy-ISODATA algorithm[J]. Remote Sensing Information, 2008, 23(5):28-32. ] DOI: 10.3969/j.issn.1000-3177.2008.05.007
|
[8] |
LeCun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11):2278-2324. DOI: 10.1109/5.726791
doi: 10.1109/5.726791
|
[9] |
Shelhamer E, Long J, Darrell T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4):640-651. DOI: 10.1109/CVPR.2015.7298965
doi: 10.1109/TPAMI.2016.2572683
pmid: 27244717
|
[10] |
杨建宇, 周振旭, 杜贞容, 等. 基于SegNet语义模型的高分辨率遥感影像农村建设用地提取[J]. 农业工程学报, 2019, 35(5):251-258.
|
|
[ Yang J Y, Zhou Z X, Du Z R, et al. Rural construction land extraction from high spatial resolution remote sensing image based on SegNet semantic segmentation model[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(5):251-258. ] DOI: 10.11975/j.issn.1002-6819.2019.05.031
|
[11] |
朱岩彬, 徐启恒, 杨俊涛, 等. 基于全卷积神经网络的高分辨率航空影像建筑物提取方法研究[J]. 地理信息世界, 2020, 27(2):101-106.
|
|
[ Zhu Y B, Xu Q H, Yang J T, et al. Full convolution neural network based building extraction approach from high resolution aerial image[J]. Geomatics World, 2020, 27(2):101-106. ] DOI: 10.3969/j.issn.1672-1586.2020.02.017
|
[12] |
Pan S J, Yang Q A. A survey on transfer learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(10):1345-1359. DOI: 10.1109/TKDE.2009.191
doi: 10.1109/TKDE.2009.191
|
[13] |
李冠东, 张春菊, 王铭恺, 等. 卷积神经网络迁移的高分影像场景分类学习[J]. 测绘科学, 2019, 44(4):116-123,174.
|
|
[ Li G D, Zhang C J, Wang M K, et al. Transfer learning using convolutional neural network for scene classification within high resolution remote sensing image[J]. Science of Surveying and Mapping, 2019, 44(4):116-123,174. ] DOI: 10.16251/j.cnki.1009-2307.2019.04.018
|
[14] |
滕文秀, 温小荣, 王妮, 等. 基于深度迁移学习的无人机高分影像树种分类与制图[J]. 激光与光电子学进展, 2019, 56(7):277-286.
|
|
[ Teng W X, Wen X R, Wang N, et al. Tree species classification and mapping based on deep transfer learning with unmanned aerial vehicle high resolution images[J]. Laser & Optoelectronics Progress, 2019, 56(7):277-286. ] DOI: 10.3788/LOP56.072801
|
[15] |
Yosinski J, Clune J, Bengio Y, et al. How transferable are features in deep neural networks?[J]. Eprint Arxiv, 2014, 27:3320-3328. DOI: 10.1201/b22524-12
|
[16] |
Tan B, Song Y, Zhong E, et al. Transitive transfer learning[C]// Acm Sigkdd International Conference on Knowledge Discovery & Data Mining. ACM, 2015,1155-1164. DOI: 10.1017/9781139061773.013
|
[17] |
Xia G S, Hu J W, Hu F, et al. AID: A benchmark data set for performance evaluation of aerial scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(7):3965-3981. DOI: 10.1109/tgrs.2017.2685945
doi: 10.1109/TGRS.2017.2685945
|
[18] |
Yang Y, Newsam S. Bag-of-visual-words and spatial extensions for land-use classification[C]// GIS '10: Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems. 2010:270-279. DOI: 10.1145/1869790.1869829
|
[19] |
Lin M, Chen Q A, Yan S C. Network in network[EB/OL]. 2013: arXiv: 1312.4400[cs.NE]. https://arxiv.org/abs/1312.4400 .
|
[20] |
Kingma D, Ba J. Adam: A aethod for stochastic optimization[J]. Computer Science, 2014:1-13.DOI: 10.1002/9780470061602.eqf13013
|