地球信息科学学报 ›› 2015, Vol. 17 ›› Issue (1): 37-44.doi: 10.3724/SP.J.1047.2015.00037

• • 上一篇    下一篇

基于空间插值的风场模拟方法比较分析

董志南1(), 郑拴宁1, 赵会兵1, 董仁才1,2,*()   

  1. 1. 中国科学院城市环境研究所 城市环境与健康重点实验室,厦门 361021
    2. 中国科学院生态环境研究中心 城市与区域生态国家重点实验室,北京 100085
  • 收稿日期:2013-10-30 修回日期:2013-12-11 出版日期:2015-01-10 发布日期:2015-01-05
  • 通讯作者: 董仁才 E-mail:zndong@iue.ac.cn;dongrencai@rcees.ac.cn
  • 作者简介:

    作者简介:董志南(1987-),男,河北邯郸人,硕士生,主要从事数字城市环境管理方面的研究。E-mail:zndong@iue.ac.cn

  • 基金资助:
    中国科学院知识创新工程重要方向项目“数字城市环境网络建设与示范”(KZCX2-YW-453);国家自然科学基金青年科学基金项目(41301167)

Comparative Analysis of Methods of Wind Field Simulation Based on Spatial Interpolation

DONG Zhinan1(), ZHENG Shuanning1, ZHAO Huibing1, DONG Rencai1,2,*()   

  1. 1. Key Laboratory of Urban Environment and Health, Institute of Urban Environment, CAS, Xiamen 361021, China
    2. State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, CAS, Beijing 100085, China
  • Received:2013-10-30 Revised:2013-12-11 Online:2015-01-10 Published:2015-01-05
  • Contact: DONG Rencai E-mail:zndong@iue.ac.cn;dongrencai@rcees.ac.cn
  • About author:

    *The author: CHEN Nan, E-mail:fjcn99@163.com

摘要:

计算流体动力学方法是目前风场空间格局模拟的主要方法之一,该方法由于受到软硬件局限,多应用于小尺度的风场模拟及分析。该方法精确程度极大地依赖于3D建模的精细程度和迭代计算模型的准确程度,与现实风场的发育过程存在明显差异。而随着物联网技术的发展,我们可通过大量的现场传感器进行风场数据的实时采集,为风场动态实时化模拟提供精确的参数。为了确定风场动态实时化模拟的最佳方法,本文以中国科学院城市环境研究所园区内32个风场传感器的月平均风速数据为研究案例,综合分析了反距离权重插值、全局多项式插值、局域多项式插值、径向基函数插值、最近邻域法插值、普通克里格插值6种空间插值方法,并采用交叉验证的方法对插值结果进行比较。结果表明,反距离权重插值在模拟的误差范围、模拟的准确度、反映极值的能力上优于其他5种方法,为1:500尺度的风场空间格局模拟提供了参考。

关键词: 风环境, 物联网, 空间插值

Abstract:

The computational fluid dynamics (CFD) method is one of the major ways of wind fields patial pattern simulation at present. This method is more often applied to wind field simulations and analyses on small scales because of the limitations of the hardware and software. Meanwhile, the precision and accuracy of this method depends on the precision of 3D building model sand the accuracy of iterated computation models, and there are significant differences existing between the simulation results and the real wind field situation. With the development of Internet of Things (IoT) technology, we can provide precise parameters to real-time simulation of regional wind fields pace distribution, by using a large number of real-time field sensor nodes. Spatial interpolation can be used to simulate the spatial distribution of all the regional environment factors. In order to determine the optimal method for real-time wind fields imulation, this research took the monthly average wind speed data of November, 2011, which are collected from 32 wind speed sensors in Institute of Urban Environment, CAS, as the example. Then, we make a comprehensive analysis of Inverse Distance Weight method, Global Polynomial method, Local Polynomial method, Radial Basis Function method, Nearest Neighbor method and Ordinary Kriging method, and compare the results of the six different methods by Cross-Validation. The result shows that the Inverse Distance Weight method is better than the other methods in the simulation error range, the simulation accuracy and the ability to reflect extreme value, which provides a reference for wind field simulation on small scales.

Key words: wind field, Internet of Things, spatial interpolation