地球信息科学学报 ›› 2016, Vol. 18 ›› Issue (3): 423-432.doi: 10.3724/SP.J.1047.2016.00423
收稿日期:
2015-05-27
修回日期:
2015-09-29
出版日期:
2016-03-10
发布日期:
2016-03-10
作者简介:
作者简介:施文灶(1982-),男,博士生,讲师,研究方向为高空间分辨率遥感影像信息提取.E-mail:
基金资助:
SHI Wenzao1,2,3,4,*(), MAO Zhengyuan1,3,4
Received:
2015-05-27
Revised:
2015-09-29
Online:
2016-03-10
Published:
2016-03-10
Contact:
SHI Wenzao
E-mail:swz@fjnu.edu.cn
摘要:
建筑物是城市地理数据库中最容易发生变化和最需要更新的部分,其更新工作量巨大,因此开展对高分辨率遥感影像中的建筑物进行自动提取和变化检测研究具有重要的意义.本文以精确提取变化建筑物的位置和轮廓为目标,基于图分割提出一种高分辨率遥感影像建筑物变化检测方法.首先,将遥感影像中的每个像元映射成图的顶点,利用像元之间的距离阈值构造图的边,综合利用位置,灰度和边缘3种特征计算边的权值,将遥感影像的分割转化为图的分割,并用归一化图分割方法得到分割对象集合;然后,以长宽比和矩形度作为约束条件,对2期遥感影像中的分割对象集合进行筛选,提取建筑物对象;最后,根据2期影像中建筑物之间的空间,面积和格局关系识别建筑物的变化类型(包括新增,消失和改建),并对其进行可视化表达.为了验证本文方法的有效性,分别以深圳市的WorldView影像和北京市的QuickBird全色影像为数据源,从中选取13组具有代表性的子影像进行实验.结果表明,本文提出的方法对配准精度较低的影像组具有一定的适应性,容许的配准误差达到20个像元(10 m),平均查准率和平均查全率分别达到93.16%和87.90%.
施文灶, 毛政元. 基于图分割的高分辨率遥感影像建筑物变化检测研究[J]. 地球信息科学学报, 2016, 18(3): 423-432.DOI:10.3724/SP.J.1047.2016.00423
SHI Wenzao,MAO Zhengyuan. The Research on Building Change Detection from High Resolution Remotely Sensed Imagery Based on Graph-cut Segmentation[J]. Journal of Geo-information Science, 2016, 18(3): 423-432.DOI:10.3724/SP.J.1047.2016.00423
表3
算法的性能数值表"
测试影像 | TP1 | TP2 | FP1 | FP2 | FN1 | FN2 | 查准率/(%) | 查全率/(%) | F1分数 |
---|---|---|---|---|---|---|---|---|---|
#1 | 1 | 0 | 0 | 0 | 0 | 0 | 100.00 | 100.00 | 100.00 |
#2 | 2 | 0 | 0 | 0 | 0 | 0 | 100.00 | 100.00 | 100.00 |
#3 | 2 | 0 | 1 | 0 | 0 | 0 | 66.67 | 100.00 | 80.00 |
#4 | 4 | 0 | 0 | 0 | 2 | 0 | 100.00 | 66.67 | 80.00 |
#5 | 0 | 5 | 0 | 1 | 0 | 1 | 83.33 | 83.33 | 83.33 |
#6 | 14 | 5 | 1 | 0 | 1 | 0 | 95.00 | 95.00 | 95.00 |
#1-#6 | 23 | 10 | 2 | 1 | 3 | 1 | 91.67 | 89.19 | 90.41 |
#7 | 7 | 0 | 0 | 0 | 1 | 0 | 100.00 | 87.50 | 93.33 |
#8 | 8 | 0 | 1 | 0 | 0 | 0 | 88.89 | 100.00 | 94.12 |
#9 | 1 | 3 | 0 | 0 | 0 | 0 | 100.00 | 100.00 | 100.00 |
#10 | 5 | 4 | 0 | 0 | 2 | 1 | 100.00 | 75.00 | 85.71 |
#11 | 3 | 0 | 0 | 0 | 1 | 0 | 100.00 | 75.00 | 85.71 |
#12 | 2 | 1 | 1 | 0 | 0 | 0 | 75.00 | 100.00 | 85.71 |
#7-#12 | 26 | 8 | 2 | 0 | 4 | 1 | 94.44 | 87.18 | 90.67 |
#13 | 39 | 3 | 2 | 1 | 6 | 0 | 93.33 | 87.50 | 90.32 |
#1-#13 | 88 | 21 | 6 | 2 | 13 | 2 | 93.16 | 87.90 | 90.46 |
[1] | Champion N, Matikainen L, Liang X, et al.A test of 2D building change detection methods: Comparison, evaluation and perspectives[C]. ISPRS Congress, 2008:297-304. |
[2] |
Durieux L, Lagabrielle E, Nelson A.A method for monitoring building construction in urban sprawl areas using object-based analysis of Spot 5 images and existing GIS data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2008,63(4):399-408.
doi: 10.1016/j.isprsjprs.2008.01.005 |
[3] |
Bouziani M, Goïta K, He D C.Automatic change detection of buildings in urban environment from very high spatial resolution images using existing geodatabase and prior knowledge[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2010,65(1):143-153.
doi: 10.1016/j.isprsjprs.2009.10.002 |
[4] | Beumier C, Idrissa M.Building change detection from uniform regions[M]. Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications, 2012: 648-655. |
[5] |
Turker M, Sumer E.Building-based damage detection due to earthquake using the watershed segmentation of the post-event aerial images[J]. International Journal of Remote Sensing, 2008,29(11):3073-3089.
doi: 10.1080/01431160701442096 |
[6] |
Huang X, Zhang L, Zhu T.Building change detection from multitemporal high-resolution remotely sensed images based on a morphological building index[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014,7(1):105-115.
doi: 10.1109/JSTARS.2013.2252423 |
[7] |
Tang Y, Huang X, Zhang L.Fault-tolerant building change detection from urban high-resolution remote sensing imagery[J]. IEEE Geoscience and Remote Sensing Letters, 2013,10(5):1060-1064.
doi: 10.1109/LGRS.2012.2228626 |
[8] | Benedek C, Descombes X, Zerubia J.Building extraction and change detection in multitemporal remotely sensed images with multiple birth and death dynamics[C]. IEEE 2009 Workshop on Applications of Computer Vision (WACV), 2009:1-6. |
[9] | Benedek C.Efficient building change detection in sparsely populated areas using coupled marked point processes[C]. 2010 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 2010:3214-3217. |
[10] |
Benedek C, Descombes X, Zerubia J.Building development monitoring in multitemporal remotely sensed image pairs with stochastic birth-death dynamics[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012,34(1):33-50.
doi: 10.1109/TPAMI.2011.94 pmid: 21576749 |
[11] | Beumier C, Idrissa M.Building change detection by histogram classification[C]. 2011 Seventh International Conference on Signal-Image Technology and Internet-Based Systems (SITIS), 2011:409-415. |
[12] |
Chen L C, Huang C Y, Teo T A.Multi-type change detection of building models by integrating spatial and spectral information[J]. International Journal of Remote Sensing, 2012,33(6):1655-1681.
doi: 10.1080/01431161.2011.593584 |
[13] | Meng Y, Zhao Z, Du X, et al.Building change detection based on similarity calibration[C]. FSKD'08 Fifth International Conference on Fuzzy Systems and Knowledge Discovery, 2008,3:527-531. |
[14] |
Rottensteiner F, Trinder J, Clode S, et al.Building detection by fusion of airborne laser scanner data and multi-spectral images: Performance evaluation and sensitivity analysis[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2007,62(2):135-149.
doi: 10.1016/j.isprsjprs.2007.03.001 |
[15] |
Tian J, Cui S, Reinartz P.Building change detection based on satellite stereo imagery and digital surface models[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014,52(1):406-417.
doi: 10.1109/TGRS.2013.2240692 |
[16] | Shi J B, Malik J.Normalized cuts and image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000,22(8):888-905. |
[17] |
Ok A O.Automated detection of buildings from single VHR multispectral images using shadow information and graph cuts[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2013,86:21-40.
doi: 10.1016/j.isprsjprs.2013.09.004 |
[1] | 郭峰, 毛政元, 邹为彬, 翁谦. 融合LiDAR数据与高分影像特征信息的建筑物提取方法[J]. 地球信息科学学报, 2020, 22(8): 1654-1665. |
[2] | 曹元晖, 刘纪平, 王勇, 王良杰, 吴文周, 苏奋振. 基于POI数据的城市建筑功能分类方法研究[J]. 地球信息科学学报, 2020, 22(6): 1339-1348. |
[3] | 贾涛, 杨仕浩, 李欣, 鄢鹏高, 喻雪松, 罗希, 陈凯. 武汉居民建筑物碳排放反演计算和时空分析[J]. 地球信息科学学报, 2020, 22(5): 1063-1072. |
[4] | 杜培军, 王欣, 蒙亚平, 林聪, 张鹏, 卢刚. 面向地理国情监测的变化检测与地表覆盖信息更新方法[J]. 地球信息科学学报, 2020, 22(4): 857-866. |
[5] | 吴瑞娟, 何秀凤, 王静. 结合像元级与对象级的滨海湿地变化检测方法[J]. 地球信息科学学报, 2020, 22(10): 2078-2087. |
[6] | 蔡博文,王树根,王磊,邵振峰. 基于深度学习模型的城市高分辨率遥感影像 不透水面提取[J]. 地球信息科学学报, 2019, 21(9): 1420-1429. |
[7] | 李泽宇,明冬萍,范莹琳,赵林峰,刘思民. 遥感影像监督分割评价指标比较与分析[J]. 地球信息科学学报, 2019, 21(8): 1265-1274. |
[8] | 王森援, 蔡国榕, 王宗跃, 吴云东. 基于加权约束的单体建筑物点云表面重建算法[J]. 地球信息科学学报, 2019, 21(5): 654-662. |
[9] | 刘懿兰, 黄晓霞, 李红旮, 柳泽, 陈崇, 王新歌. 基于卷积神经网络与条件随机场方法提取乡镇非正规固体废弃物[J]. 地球信息科学学报, 2019, 21(2): 259-268. |
[10] | 刘浩, 骆剑承, 黄波, 杨海平, 胡晓东, 徐楠, 夏列钢. 基于特征压缩激活Unet网络的建筑物提取[J]. 地球信息科学学报, 2019, 21(11): 1779-1789. |
[11] | 杨进一,徐伟铭,王成军,翁谦. 基于超像元词包特征和主动学习的高分遥感影像变化检测[J]. 地球信息科学学报, 2019, 21(10): 1594-1607. |
[12] | 罗星, 徐伟铭, 王佳. 基于对象BOW特征的高分辨率遥感影像变化检测方法[J]. 地球信息科学学报, 2018, 20(8): 1150-1159. |
[13] | 邵磊, 董广军, 于英, 姚强强, 张阿龙. 车载激光扫描数据中建筑物立面快速提取[J]. 地球信息科学学报, 2018, 20(4): 462-470. |
[14] | 周国清, 黄煜, 岳涛, 王浩宇, 贺朝双, 李晓柱. 基于纹理数据和SCSG-BR表示的城市建筑物混合 建模[J]. 地球信息科学学报, 2018, 20(4): 543-551. |
[15] | 王成军, 毛政元, 徐伟铭, 翁谦. 超像素与主动学习相结合的遥感影像变化检测方法[J]. 地球信息科学学报, 2018, 20(2): 235-245. |
|