地球信息科学学报 ›› 2017, Vol. 19 ›› Issue (5): 713-722.doi: 10.3724/SP.J.1047.2017.00713
• 遥感科学与应用技术 • 上一篇
收稿日期:
2016-07-25
修回日期:
2016-11-09
出版日期:
2017-05-20
发布日期:
2017-05-20
通讯作者:
徐涵秋
E-mail:zhongli_lin@qq.com;hxu@fzu.edu.cn
作者简介:
作者简介:林中立(1989-),男,博士生,主要从事环境与资源遥感研究。E-mail:
基金资助:
Received:
2016-07-25
Revised:
2016-11-09
Online:
2017-05-20
Published:
2017-05-20
Contact:
XU Hanqiu
E-mail:zhongli_lin@qq.com;hxu@fzu.edu.cn
摘要:
城市热岛强度是城市热岛研究和应用中的一个重要度量指标,但其科学计算一直是该研究的难点。目前常用的基于气象站的城乡温差计算法,由于在代表城区与郊区温度的选择上存在困难,较难准确客观地计算热岛强度。为此,本文在LCZ分类体系的基础上,结合卫星遥感影像数据,将其应用于福州市的城市热岛研究中,以科学地计算城市热岛强度。研究表明,采用分层分类和人工目视解译相结合的方法能较好地实现LCZ的遥感分类,并确定出分别代表城市和郊区的地表温度,据此计算得到2015年9月27日福州的城市热岛强度为6.73 ℃,热岛效应十分显著。进一步将分类结果与遥感地表温度影像叠加,可有效地区分各地类的热特性,全面反映城市热岛的分布状况。
林中立, 徐涵秋. 基于LCZ的城市热岛强度研究[J]. 地球信息科学学报, 2017, 19(5): 713-722.DOI:10.3724/SP.J.1047.2017.00713
LIN Zhongli,XU Hanqiu. A Study of Urban Heat Island Intensity Based on “Local Climate Zones”[J]. Journal of Geo-information Science, 2017, 19(5): 713-722.DOI:10.3724/SP.J.1047.2017.00713
表1
LCZ分类体系[16]"
建筑类型 | 定义 | 土地覆盖类型 | 定义 |
---|---|---|---|
![]() | 密集混合的高层建筑(10层以上);几乎无树木;不透水路面;建筑材质为混凝土、钢材、石头和 玻璃 | ![]() | 茂密的落叶林和(或)常绿林;地表覆盖大量可透水面(低矮的植被);区域功能为天然林、苗圃林或城市公园 |
![]() | 密集混合的中层建筑(3-9层);几乎无树木;不透水路面;建筑材质为石头、砖、瓦片和混凝土 | ![]() | 稀疏的落叶林和(或)常绿林;地表覆盖大量可透水面(低矮的植被);区域功能为天然林、苗圃林或城市公园 |
![]() | 密集混合的低层建筑(1-3层);几乎无树木;不透水路面;建筑材质为石头、砖、瓦片和混凝土 | ![]() | 开阔分布的灌木、矮树丛和矮小的树木;地表覆盖大量可透水面(裸土或沙);区域功能为天然灌木林地或农用地 |
![]() | 开阔分布的高层建筑(10层以上);地表覆盖大量可透水面(低矮的植被、稀疏的树木);建筑材质为混凝土、钢材、石头和玻璃 | ![]() | 草地或草本植物/作物。几乎无树木;区域功能为草地、农用地或城市公园 |
![]() | 开阔分布的中层建筑(3-9层);地表覆盖大量可透水面(低矮的植被、稀疏的树木);建筑材质为混凝土、钢材、石头和玻璃 | ![]() | 岩石或不透水路面;几乎无植被;区域功能为天然荒漠(岩石)或城市交通运输干道 |
![]() | 开阔分布的低层建筑(1-3层);地表覆盖大量可透水面(低矮的植被、稀疏的树木);建筑材质为木头、砖、石头、瓦片和混凝土 | ![]() | 土或沙;几乎无植被;区域功能为天然沙漠或农用地 |
![]() | 密集混合的单层建筑;几乎无树木;夯实的土质路面;轻质建筑材质(木头,茅草和波纹状板材) | ![]() | 大面积开阔的水体,如海和湖;或小面积水体,如河、水库和池塘 |
![]() | 开阔分布的低层大型建筑(1-3层);几乎无树木;不透水道面;建筑材质为钢材、混凝土、金属和 石头 | 土地覆盖的可变特性 (因气候变化,农业耕作和季节循环所引起的土地覆盖特性的变化) | |
![]() | 自然环境中零散的中、小型建筑;地表覆盖大量可透水面(低矮的植被、稀疏的树木) | b 光秃的树木 | 冬季少叶落叶林 |
s 积雪覆盖 | 积雪覆盖厚度大于10 cm | ||
![]() | 中低层工业建筑(塔、贮水池、堆积物);几乎无树木;不透水路面或夯实的土质路面;建筑材质为金属、钢材和混凝土 | d 干燥地表 | 焦土(如火烧迹地) |
w 湿润地表 | 浸水土壤 |
表3
LCZ分类结果统计"
LCZ类型 | 研究区范围 | 建成区范围 | |||
---|---|---|---|---|---|
面积/km2 | 比例/% | LST/℃ | 面积/km2 | 比例/% | |
LCZ 1 密集高层建筑 | 21.29 | 2.10 | 37.38 | 19.48 | 8.42 |
LCZ 2 密集中层建筑 | 68.01 | 6.71 | 39.67 | 64.44 | 27.86 |
LCZ 3 密集低层建筑 | 52.62 | 5.19 | 39.23 | 33.52 | 14.49 |
LCZ 5 开阔中层建筑 | 21.88 | 2.16 | 37.89 | 19.24 | 8.32 |
LCZ 8 大型低层建筑 | 2.23 | 0.22 | 42.45 | 2.23 | 0.96 |
LCZ 10 工业厂房 | 16.79 | 1.66 | 41.82 | 15.14 | 6.54 |
LCZ A 茂密树木 | 546.41 | 53.92 | 28.24 | 4.61 | 1.99 |
LCZ B 稀疏树木 | 78.22 | 7.72 | 28.64 | 6.31 | 2.73 |
LCZ C 灌木和矮树 | 53.55 | 5.28 | 32.72 | 15.45 | 6.68 |
LCZ D 低矮植被 | 44.52 | 4.39 | 32.94 | 8.61 | 3.72 |
LCZ E 裸露的岩石或道路 | 30.47 | 3.01 | 39.23 | 22.33 | 9.65 |
LCZ F 裸土或沙 | 14.66 | 1.45 | 37.96 | 9.38 | 4.06 |
LCZ G 水体 | 62.76 | 6.19 | 29.05 | 10.56 | 4.57 |
合计 | 1013.41 | 100.00 | - | 231.33 | 100.00 |
附表A
LCZ分类误差矩阵"
验证数据 | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LCZ类型 | 1 | 2 | 3 | 5 | 8 | 10 | A | B | C | D | E | F | G | 行合计 | 使用者精度/% | |
分类数据 | 1 | 84 | 9 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 4 | 0 | 15 | 115 | 73.04 |
2 | 8 | 173 | 9 | 4 | 0 | 3 | 0 | 0 | 3 | 0 | 9 | 1 | 0 | 210 | 82.38 | |
3 | 1 | 15 | 88 | 0 | 2 | 4 | 0 | 1 | 0 | 0 | 4 | 6 | 0 | 121 | 72.73 | |
5 | 1 | 12 | 0 | 39 | 0 | 2 | 0 | 0 | 2 | 1 | 1 | 1 | 0 | 59 | 66.10 | |
8 | 0 | 0 | 0 | 1 | 13 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 14 | 92.86 | |
10 | 0 | 4 | 5 | 0 | 0 | 34 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 45 | 75.56 | |
A | 0 | 0 | 0 | 0 | 0 | 0 | 236 | 14 | 4 | 0 | 0 | 0 | 0 | 254 | 92.91 | |
B | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 29 | 8 | 1 | 0 | 0 | 0 | 42 | 69.05 | |
C | 1 | 0 | 0 | 4 | 0 | 0 | 0 | 4 | 52 | 2 | 0 | 2 | 3 | 68 | 76.47 | |
D | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 2 | 37 | 0 | 0 | 1 | 43 | 86.05 | |
E | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 40 | 5 | 0 | 51 | 78.43 | |
F | 0 | 2 | 2 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 28 | 0 | 35 | 80.00 | |
G | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 142 | 143 | 99.30 | |
列合计 | 97 | 219 | 104 | 48 | 16 | 47 | 240 | 49 | 73 | 42 | 61 | 43 | 161 | 1200 | ||
生产者精度/% | 86.60 | 79.00 | 84.62 | 81.25 | 81.25 | 72.34 | 98.33 | 59.18 | 71.23 | 88.10 | 65.57 | 65.12 | 88.20 | |||
总精度/% | 82.93 | |||||||||||||||
Kappa系数 | 0.806 |
[1] | United Nations.World urbanization prospects: the 2014 revision[M]. Population Division, Department of Economic and Social Affairs, Now York, 2015. |
[2] | Georgescu M, Moustaoui M, Mahalov A, et al.Summer-time climate impacts of projected megapolitan expansion in Arizona[J]. Nature Climate Change, 2013,3(1):37-41. |
[3] |
Weng Q.Thermal infrared remote sensing for urban climate and environmental studies: Methods, applications, and trends[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2009,64(4):335-344.
doi: 10.1016/j.isprsjprs.2009.03.007 |
[4] |
张艳,鲍文杰,余琦,等.超大城市热岛效应的季节变化特征及其年际差异[J].地球物理学报,2012,55(4):1121-1128.
doi: 10.6038/j.issn.0001-5733.2012.04.007 |
[Zhang Y, Bao W J, Yu Q, et al.Study on seasonal variations of the urban heat island and its interannual changes in a typical Chinese megacity[J]. Chinese Journal of Geophysics, 2012,55(4):1121-1128. ]
doi: 10.6038/j.issn.0001-5733.2012.04.007 |
|
[5] | 徐涵秋. 基于城市地表参数变化的城市热岛效应分析[J].生态学报, 2011,31(14):3890-3901. |
[Xu H Q.Analysis on urban heat island effect based on the dynamics of urban surface biophysical descriptors[J]. Acta Ecological Sinica, 2011,31(14):3890-3901. ] | |
[6] |
Mnaley G.On the frequency of snowfall in metropolitan England[J]. Quarterly Journal of the Royal Meteorological Society, 1958,84:70-72.
doi: 10.1002/qj.49708435910 |
[7] |
Stewart I D.A systematic review and scientific critique of methodology in modern urban heat island literature[J]. International Journal of Climatology, 2011,31(2):200-217.
doi: 10.1002/joc.2141 |
[8] |
Zhao L, Lee X, Smith R B, et al.Strong contributions of local background climate to urban heat islands[J]. Nature, 2014,511(7508):216-219.
doi: 10.1038/nature13462 pmid: 25008529 |
[9] |
Zhou D, Zhao S, Liu S, et al.Surface urban heat island in China's 32 major cities: Spatial patterns and drivers[J]. Remote Sensing of Environment, 2014,152:51-61.
doi: 10.1016/j.rse.2014.05.017 |
[10] |
王郁,胡非.近10年来北京夏季城市热岛的变化及环境效应的分析研究[J].地球物理学报,2006,49(1):61-68.
doi: 10.3321/j.issn:0001-5733.2006.01.009 |
[Wang Y, Hu F.Variations of the urban heat island in summer of the recent 10 years over Beijing and its environment effect[J]. Chinese Journal of Geophysics, 2006,49(1):61-68. ]
doi: 10.3321/j.issn:0001-5733.2006.01.009 |
|
[11] | 许辉熙. 成都平原中等城市的热岛效应动态特征对比研究[J].测绘与空间地理信息, 2015,38(1):13-19. |
[Xu H X.Comparison on dynamic characteristics of urban heat island effects in medium - sized cities in Chengdu Plain[J]. Geomatics and spatial information technology, 2015,38(1):13-19. ] | |
[12] |
Peng S, Piao S, Ciais P, et al.Surface urban heat island across 419 global big cities[J]. Environmental Science and Technology, 2012,46(2):696-703.
doi: 10.1021/es2030438 pmid: 22142232 |
[13] |
Zhou B, Rybski D, Kropp J P.On the statistics of urban heat island intensity[J]. Geophysical Research Letters, 2013,40(20):5486-5491.
doi: 10.1002/2013GL057320 |
[14] |
Tan M, Li X.Quantifying the effects of settlement size on urban heat islands in fairly uniform geographic areas[J]. Habitat International, 2015,49(4):100-106.
doi: 10.1016/j.habitatint.2015.05.013 |
[15] |
Imhoff M L, Zhang P, Wolfe R E, et al.Remote sensing of the urban heat island effect across biomes in the continental USA[J]. Remote Sensing of Environment, 2010,114(3):504-513.
doi: 10.1109/IGARSS.2010.5653907 |
[16] |
Stewart I D, Oke T R.Local climate zones for urban temperature studies[J]. Bulletin of the American Meteorological Society, 2012,93(12):1879-1900.
doi: 10.1175/BAMS-D-11-00019.1 |
[17] |
Stewart I D, Oke T R, Krayenhoff E S.Evaluation of the “local climate zone” scheme using temperature observations and model simulations[J]. International Journal of Climatology, 2014,34(4):1062-1080.
doi: 10.1002/joc.3746 |
[18] |
Alexander P J, Mills G.Local climate classification and Dublin's urban heat island[J]. Atmosphere, 2014,5(4):755-774.
doi: 10.3390/atmos5040755 |
[19] |
Ng Y X Y, Chua L H C, Irvine K N. A study of urban heat island using "local climate zones" - the case of Singapore[J]. British Journal of Environment and Climate Change, 2015,5(2):116-133.
doi: 10.9734/BJECC/2015/13051 |
[20] |
Lehnert M, Geletič J, Husák J, et al.Urban field classification by “local climate zones” in a medium-sized Central European city: The case of Olomouc (Czech Republic)[J]. Theoretical and Applied Climatology, 2015,122:531-541.
doi: 10.1007/s00704-014-1309-6 |
[21] |
Bechtel B, Alexander P J, Böhner J, et al.Mapping local climate zones for a worldwide database of the form and function of cities[J]. ISPRS International Journal of Geo-Information, 2015,4(1):199-219.
doi: 10.3390/ijgi4010199 |
[22] | 天气网.四大火炉新排名福州居首[N/OL]. 2014. . |
[23] |
Chander G, Markham B.Revised Landsat-5 TM radiometric calibration procedures and postcalibration dynamic ranges[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003,41(11):2674-2677.
doi: 10.1109/TGRS.2003.818464 |
[24] |
Chavez P S.Image-based atmospheric corrections-revisited and improved[J]. Photogrammetric Engineering and Remote Sensing, 1996,62(9):1025-1035.
doi: 10.1016/0031-0182(96)00019-3 |
[25] | USGS. Landsat 8 (L8) Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS)[OL]. , 2013. |
[26] | Stewart I D, Oke T R.Newly developed “thermal climate zones” for defining and measuring urban heat island magnitude in the canopy layerC]//[Eighth Symposium on Urban Environment, Phoenix, AZ, 2009. |
[27] |
Xu H.Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery[J]. International Journal of Remote Sensing, 2006,27(14):3025-3033.
doi: 10.1080/01431160600589179 |
[28] | Rouse J W, Haas R H, Schell J A, et al.Monitoring vegetation systems in the great plains with ERTSC]//[Proceedings of the Third ERTS Symposium, Nasa SP-351, Washington DC, USA, 1973,1:309-317. |
[29] |
Xu H.Extraction of urban built-up land features from Landsat imagery using a thematic-oriented index combination technique[J]. Photogrammetric Engineering and Remote Sensing, 2007,73(12):1381-1391.
doi: 10.14358/PERS.73.12.1381 |
[30] | Xu H Q.Analysis of impervious surface and its impact on urban heat environment using the normalized difference impervious surface index (NDISI)[J]. Photogrammetric Engineering & Remote Sensing, 2010,76(5):557-565. |
[31] | Rikimaru A.Landsat TM data processing guide for forest canopy density mapping and monitoring modelC]//[International Tropical Timber Organization (ITTO) workshop on utilization of remote sensing in site assessment and planning for rehabilitation of logged-over forest, Bangkok, Thailand, 1996:1-8. |
[32] |
Carlson T N, Ripley D A.On the relation between NDVI, fractional vegetation cover, and leaf area index[J]. Remote Sensing of Environment, 1997,62(3):241-252.
doi: 10.1016/S0034-4257(97)00104-1 |
[33] | 徐涵秋,林中立,潘卫华.单通道算法地表温度反演的若干问题讨论——以Landsat系列数据为例[J].武汉大学学报·信息科学版, 2015,40(4):487-492. |
[Xu H Q, Lin Z L, Pan W H.Some issues in land surface temperature retrieval of Landsat thermal data with the single-channel algorithm[J]. Geomatics and information science of Wuhan University, 1997,62(3):241-252. ] | |
[34] |
徐涵秋. 新型Landsat8卫星影像的反射率和地表温度反演[J].地球物理学报,2015,58(3):741-747.
doi: 10.6038/cjg20150304 |
[Xu H Q.Retrieval of the reflectance and the land surface temperature of the newly-launched Landsat 8 satellite[J]. Chinese Journal of Geophysics, 2015,58(3):741-747. ]
doi: 10.6038/cjg20150304 |
|
[35] |
Jiménez-Muñoz J C, Cristóbal J, Sobrino J A, et al. Revision of the single-channel algorithm for land surface temperature retrieval from Landsat thermal-infrared data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009,47(1):339-349.
doi: 10.1109/TGRS.2008.2007125 |
[36] |
Jiménez-Muñoz J C, Sobrino J A. A generalized single-channel method for retrieving land surface temperature from remote sensing data[J]. Journal of Geophysical Research, 2003,108(D22):4688, doi: 10.1029/2003JD003480.
doi: 10.1029/2003JD003480 |
[37] |
Jimenez-Munoz J C, Sobrino J A, Skokovic D, et al. Land surface temperature retrieval methods from Landsat-8 thermal infrared sensor data[J]. IEEE Geoscience and Remote Sensing Letters, 2014,11(10):1840-1843.
doi: 10.1109/LGRS.2014.2312032 |
[1] | 帅艳民, 马现伟, 曲歌, 邵聪颖, 刘涛, 刘守民, 黄华兵, 谷玲霄, 拉提帕·吐尔汗江, 梁继, 李玲. 协同多时相波谱特征的不透水面信息级联提取[J]. 地球信息科学学报, 2021, 23(1): 171-186. |
[2] | 王志华, 杨晓梅, 周成虎. 面向遥感大数据的地学知识图谱构想[J]. 地球信息科学学报, 2021, 23(1): 16-28. |
[3] | 王艳杰, 王卷乐, 魏海硕, Altansukh Ochir, Davaadorj Davaasuren, Sonomdagva Chonokhuu. 基于稀疏样点的蒙古国产草量估算方法研究[J]. 地球信息科学学报, 2020, 22(9): 1814-1822. |
[4] | 陈辉, 厉青, 王中挺, 马鹏飞, 李营, 赵爱梅. 一种基于FY3D/MERSI2的AOD遥感反演方法[J]. 地球信息科学学报, 2020, 22(9): 1887-1896. |
[5] | 蒲东川, 王桂周, 张兆明, 牛雪峰, 何国金, 龙腾飞, 尹然宇, 江威, 孙嘉悦. 基于独立成分分析和随机森林算法的城镇用地提取研究[J]. 地球信息科学学报, 2020, 22(8): 1597-1606. |
[6] | 李婉, 牛陆, 陈虹, 吴骅. 基于随机森林算法的地表温度鲁棒降尺度方法[J]. 地球信息科学学报, 2020, 22(8): 1666-1678. |
[7] | 阿依尼格尔·亚力坤, 买买提艾力·买买提依明, 刘素红, 杨帆, 何清, 刘永强. 新疆沙漠地区地表宽波段比辐射率遥感估算[J]. 地球信息科学学报, 2020, 22(8): 1743-1751. |
[8] | 赵青松, 兰安军, 范泽孟, 杨青. 贵州省不同地貌形态类型土壤侵蚀强度变化的定量分析[J]. 地球信息科学学报, 2020, 22(7): 1555-1566. |
[9] | 龚围, 李丽, 柳钦火, 辛晓洲, 彭志晴, 邬明权, 牛铮, 田海峰. “一带一路”区域水电站工程生态环境影响遥感监测[J]. 地球信息科学学报, 2020, 22(7): 1424-1436. |
[10] | 朱惠, 张清凌, 张珊. 1992—2017年基于夜光遥感的中亚社会经济发展时空特征分析[J]. 地球信息科学学报, 2020, 22(7): 1449-1462. |
[11] | 叶虎平, 廖小罕, 何贤强, 岳焕印. 斯里兰卡近海海洋生态环境变化遥感监测分析[J]. 地球信息科学学报, 2020, 22(7): 1463-1475. |
[12] | 高旺旺, 冯建中, 白林燕, 杨建华, 郭雷风, 李华林, 崔梦瑞. 海南岛气溶胶时空变化及来源追溯[J]. 地球信息科学学报, 2020, 22(7): 1532-1543. |
[13] | 王维佳, 王汶, 杨熙, 赵彦云. 基于MODIS GPP产品的冬小麦保险费率厘定方法研究[J]. 地球信息科学学报, 2020, 22(7): 1578-1587. |
[14] | 邬明权, 王标才, 牛铮, 黄文江. 工程项目地球大数据监测与分析理论框架及研究进展[J]. 地球信息科学学报, 2020, 22(7): 1408-1423. |
[15] | 王永全, 汪驰升, 王乐涵, 佘佳霓, 李清泉. 民航客机平台夜光遥感方法在香港经济活动变化检测中的应用[J]. 地球信息科学学报, 2020, 22(5): 1153-1160. |
|