地球信息科学学报 ›› 2017, Vol. 19 ›› Issue (8): 1116-1131.doi: 10.3724/SP.J.1047.2017.01116

• 遥感科学与应用技术 • 上一篇    下一篇

近30年刘家峡以下黄河上游河道湿地演变规律与驱动力分析

夏热帕提·阿不来提1,2(), 刘高焕1,*(), 刘庆生1, 黄翀1, 管续栋1,2   

  1. 1. 中国科学院地理科学与资源研究所 资源与环境信息系统国家重点实验室,北京 100101
    2. 中国科学院大学,北京 100049
  • 收稿日期:2016-12-07 修回日期:2017-06-14 出版日期:2017-08-20 发布日期:2017-08-31
  • 通讯作者: 刘高焕 E-mail:xrpt@lreis.ac.cn;liugh@lreis.ac.cn
  • 作者简介:

    作者简介:夏热帕提·阿不来提(1986-),女,新疆伊犁人,博士生,主要从事湿地生态模拟研究。E-mail: xrpt@lreis.ac.cn

  • 基金资助:
    资源与环境信息系统国家重点实验室自主创新项目(08R8A010YA);国际科技合作专项项目(2012DFG22050);中国科学院战略性先导专项项目(XDA05050601)

Channel Wetlands Evolution Analysis From Liujiaxia to Togtoh County of Inner Mongolia in the Last Three Decades

Xarapat Ablat1,2(), LIU Gaohuan1,*(), LIU Qingsheng1, HUANG Chong1, GUAN Xudong1,2   

  1. 1. State Key Laboratory of Resources and Environment Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    2. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2016-12-07 Revised:2017-06-14 Online:2017-08-20 Published:2017-08-31
  • Contact: LIU Gaohuan E-mail:xrpt@lreis.ac.cn;liugh@lreis.ac.cn

摘要:

河道湿地是流域生态系统中,位于水陆交错地带,关联陆地生态系统和水生生态系统的桥梁和纽带,对蓄水滞洪、净化水质和水土保持,以下维持生物多样性和生态平衡起重要的作用。本文采用1986、1996、2000、2006和2015年5期Landsat遥感影像数据对刘家峡以下黄河上游湿地进行湿地解译提取,并利用空间统计分析法、转移矩阵法和质心位置变化法对刘家峡以下黄河上游河段河道湿地演变规律以及驱动力因素进行研究。结果表明,1986-2015年,黄河上游河道湿地面积从17.3万hm2逐渐减少到12.2万hm2,减少了29.0%。研究区土地利用类型的转移主要发生在河流、裸滩、草本湿地与耕地的相互转化上。过去30年嫩滩湿地的变化幅度远大于老滩湿地,嫩滩湿地面积从1986年的15.46万hm2减少到2015年的10.41万hm2,减少了32.7%,嫩滩湿地演变规律为天生湿地型之间的相互演变,即河流-裸滩-沼泽湿地。而老滩湿地面积基本处在稳定状态,面积范围在1.84~2.28万hm2之间,具有天然湿地-人工湿地与天然湿地-农业用地的演变规律特征。水渠湿地、坑塘湿地和森林湿地质心位置变化较为突出,由单一类型动态度分析可知,研究区自然湿地萎缩、城镇化加速、河流水面面积减少加快。以上分析结果与研究区气温、水利水电工程、灌溉用水、凌汛期冰情以及城镇化程度均有关,与降雨量无明确关系。

关键词: 河道湿地, 黄河上游、湿地系统动态演变, 转移矩阵法, 质心位置变化法

Abstract:

In the river basin ecosystem, channel wetland is located in aquatic terrestrial ecotone. The bridge and the link between terrestrial and aquatic ecosystems play an irreplaceable role in water detention, water purification, soil-water conservation, maintaining biodiversity and ecological balance. In this paper, we used Landsat satellite images of 1986, 1996, 2000, 2006 and 2015 to extract different types of river wetland systems between the Liujiaxia and Togtoh County of inner Mongolia in the last three decades. Then, we used spatial stastics analysis, transfer matrix and centroid position change method to analyze dynamic evolution and driving factors of wetland types. The results shows that, during 1986-2015 years, channel wetland area in the study area gradually decreased from 173×104 ha to 122×104 ha (~29.0%). Wetland transformation of the study area mainly occurs between the river, nude beach, herbal-wetland and farmland. In the last thirty years, the range of active channel wetland changes far greater than non-active channel wetland. The area of active channel wetland decreased from 15.46 ×104 ha in 1986 to 10.41×104 ha in 2015, decreased by 32.7%. The evolution of the active channel wetlands mainly occurs between the natural wetland types, namely, the river-bare Beach-swamp wetland. The non-active wetland area is basically stable, and the area is between 1.84-2.28 ×104 ha. It has characteristics of transformation between the natural wetland -constructed wetland and between natural wetland - agricultural land. The centroid position change of forest wetland, canal wetland and pond wetland are more prominent compared to other wetland types. The results of the single land use dynamics shows that, due to gradually accelerating urbanization pace, antrophy of the natural wetlands, increase the weight of farmland salinity, hydroelectric station system construction caused gradually decrease in the river area. The cropland to forest policy and the grassland to cropland policy result to accelerated dynamic change of forset, pounds, river, farmland, abandonedland and bareland. Through the analysis of channel wetlands, the change of active channel wetland mainly contribute to the wetland change of whole study area. The change of non-active channel wetlands was less affected by channel wetland changes. Our results are related to temperature, water conservancy, hydropower engineering and irrigation water, urbanization degree and ice flood season, but less sensitive to precipitation.

Key words: the upstream of the Yellow River, dynamic change of wetland system, transfer matrix method, centriod position change method, land use dynamics