Journal of Geo-information Science ›› 2019, Vol. 21 ›› Issue (1): 25-35.doi: 10.12082/dqxxkx.2019.180199
Previous Articles Next Articles
Luyi WANG1,5(), Jiansheng WU1,2,*(
), Weifeng LI3,4
Received:
2018-04-23
Revised:
2018-09-23
Online:
2019-01-20
Published:
2019-01-20
Contact:
Jiansheng WU
E-mail:wangluyi@pku.edu.cn;wujs@pkusz.edu.cn
Supported by:
Luyi WANG, Jiansheng WU, Weifeng LI. Usage Patterns and Driving Mechanisms of Public Bicycle Systems in Small and Medium-Sized Cities based on Space-Time Data Mining[J].Journal of Geo-information Science, 2019, 21(1): 25-35.DOI:10.12082/dqxxkx.2019.180199
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] |
Duran A C, Anaya-boig E, Shake J D, et al. Bicycle-sharing system socio-spatial inequalities in Brazil[J]. Journal of Transport & Health, 2018,8:262-270.
doi: 10.1016/j.jth.2017.12.011 |
[2] | 朱玮,庞宇琦,王德.自行车出行行为和决策研究进展[J].国际城市规划,2013,28(1):54-59. |
[ Zhu W, Pang Y Q, Wang D.Progress of research on bicycle travel behavior and decisions[J]. Urban Planning International, 2013,28(1):54-59. ] | |
[3] | Froehlich J, Neumann J, Oliver N.Sensing and predicting the pulse of the city through shared bicycling[C]. Pasadena: Proceedings of the International Joint Conference on Artificial Intelligence, 2009:1420-1426. |
[4] | Burden A M, Barth R.Bike-share opportunities in New York City[R]. New York: Department of City Planning, 2009:11-19. |
[5] |
O'brien O, Cheshire J, Batty M. Mining bicycle sharing data for generating insights into sustainable transport systems[J]. Journal of Transport Geography, 2014,34(219): 262-273.
doi: 10.1016/j.jtrangeo.2013.06.007 |
[6] |
刘冰,曹娟娟,周于杰,等.城市公共自行车使用活动的时空间特征研究——以杭州为例[J].城市规划学刊,2016(3):77-84.
doi: 10.16361/j.upf.201603009 |
[ Liu B, Cao J J, Zhou Y J, et al.A study on the temporal-spatial features of bicycle-sharing activities: A case of Hangzhou[J]. Urban Planning Forum, 2016(3):77-84. ]
doi: 10.16361/j.upf.201603009 |
|
[7] | 郭素萍,甄峰,尹秋怡.城市公共自行车出行时空间特征分析[J].规划师,2017,33(6):112-118. |
[ Guo S P, Zhen F, Yin Q Y.Analysis on space-temporal characters of public bicycles[J]. Planners, 2017,33(6):112-118. ] | |
[8] | 邓力凡,谢永红,黄鼎曦.基于骑行时空数据的共享单车设施规划研究[J].规划师,2017,33(10):82-88. |
[ Deng L F, Xie Y H, Huang D X.Bicycle-sharing facility planning base on riding spatio-temporal data[J]. Planners, 2017,33(10):82-88. ] | |
[9] | 朱玮,庞宇琦,王德,等.上海市闵行区公共自行车出行特征研究[J].上海城市规划,2012(6):102-107. |
[ Zhu W, Pang Y Q, Wang D, et al.Research on the travel characteristics of public bicycle in Minhang District, Shanghai[J]. Shanghai Urban Planning Review, 2012(6):102-107. ] | |
[10] |
朱玮,庞宇琦,王德,等.公共自行车系统影响下居民出行的变化与机制研究——以上海闵行区为例[J].城市规划学刊,2012(5):76-81.
doi: 10.3969/j.issn.1000-3363.2012.05.010 |
[ Zhu W, Pang Y Q, Wang D, et al.Travel behavior change after the introduction of public bicycle systems: A case study of Minhang District, Shanghai[J]. Urban Planning Forum, 2012(5):76-81. ]
doi: 10.3969/j.issn.1000-3363.2012.05.010 |
|
[11] |
Zhang Y, Thomas T, Brussel M, et al.Exploring the impact of built environment factors on the use of public bikes at bike stations: Case study in Zhongshan, China[J]. Journal of Transport Geography, 2017,58(SupC):59-70.
doi: 10.1016/j.jtrangeo.2016.11.014 |
[12] | Wang X, Lindsey G, Schoner J E, et al.Modeling bike share station activity: Effects of nearby businesses and jobs on trips to and from stations[J]. Journal of Urban Planning and Development, 2015,142(1):4015001. |
[13] |
Faghih-Imani A, Eluru N, El-Geneidy A M, et al. How land-use and urban form impact bicycle flows: Evidence from the bicycle-sharing system (BIXI) in Montreal[J]. Journal of Transport Geography, 2014,41:306-314.
doi: 10.1016/j.jtrangeo.2014.01.013 |
[14] | 广东惠民运营股份有限公司.2017. , . |
[15] | 欧彦婵. 韶关主城区自行车交通系统规划研究[J].建筑知识:学术刊,2014(B02):93-93. |
[ Ou Y C.Research on the planning of bicycle transportation system in main urban areas of Shaoguan[J]. Building Knowledge: Academic Journal, 2014(B02):93-93. ] | |
[16] | “2013 LandScan data for population distribution from the Oak Ridge National Laboratory in USA.”[EB/OL].Oak Ridge National Laboratory. . |
[17] | OpenStreetMap contributors[EB/OL]. “OpenStreetMap.” . |
[18] |
Long Y.Redefining Chinese city system with emerging new data[J]. Applied Geography, 2016, 75:36-48.
doi: 10.1016/j.apgeog.2016.08.002 |
[19] |
Jin X, Long Y, Sun W, et al.Evaluating cities' vitality and identifying ghost cities in China with emerging geographical data[J]. Cities, 2017,63:98-109.
doi: 10.1016/j.cities.2017.01.002 |
[20] |
Lathia N, Ahmed S, Capra L.Measuring the impact of opening the London shared bicycle scheme to casual users[J]. Transportation Research Part C: Emerging Technologies, 2012,22:88-102.
doi: 10.1016/j.trc.2011.12.004 |
[21] | Berndt D J, Clifford J.Using dynamic time warping to find patterns in time series[C]. Working notes of the knowledge discovery in databases workshop, 1994:359-370. |
[22] |
Kate R J.Using dynamic time warping distances as features for improved time series classification[J]. Data Mining and Knowledge Discovery, 2016,30(2):283-312.
doi: 10.1007/s10618-015-0418-x |
[23] |
El-Assi W, Mahmoud M S, Habib K N.Effects of built environment and weather on bike sharing demand: A station level analysis of commercial bike sharing in Toronto[J]. Transportation, 2017,44(3):589-613.
doi: 10.1007/s11116-015-9669-z |
[24] |
Etienne C, Latifa O.Model-based count series clustering for bike sharing system usage mining: A case study with the Vélib’ System of Paris[J]. Acm Transactions on Intelligent Systems and Technology, 2014,5(3):1-21.
doi: 10.1145/2560188 |
[25] |
Gutierrez J, Cardozo O D, Garciapalomares J C.Transit ridership forecasting at station level: An approach based on distance-decay weighted regression[J]. Journal of Transport Geography, 2011,19(6):1081-1092.
doi: 10.1016/j.jtrangeo.2011.05.004 |
[26] | 李航. 统计学习方法[M].北京:清华大学出版社,2012:55-56. |
[ Li H.Statistical learning method[M]. Beijing: Tsinghua University Press, 2012:55-56. ] | |
[27] |
Breiman L.Random forests[J]. Machine Learning, 2001,45(1):5-32.
doi: 10.1023/A:1010933404324 |
[28] |
Liu Y, Liu X, Gao S, et al.Social sensing: A new approach to understanding our socioeconomic environments[J]. Annals of the Association of American Geographers, 2015,105(3):512-530.
doi: 10.1080/00045608.2015.1018773 |
[29] |
牟乃夏,张恒才,陈洁,等.轨迹数据挖掘城市应用研究综述[J].地球信息科学学报,2015,17(10):1136-1142.
doi: 10.3724/SP.J.1047.2015.01136 |
[ Mou N X, Zhang H C, Chen J, et al.A review on the application research of trajectory data mining in urban cities[J]. Journal of Geo-information Science, 2015,17(10):1136-1142. ]
doi: 10.3724/SP.J.1047.2015.01136 |
|
[30] | Han H, Guo X, Yu H.Variable selection using mean decrease accuracy and mean decrease gini based on random forest[C]. IEEE International Conference on Software Engineering and Service Science, 2017:219-224. |
[31] |
Zhang L, Zhang J, Duan Z Y, et al.Sustainable bike-sharing systems: Characteristics and commonalities across cases in urban China[J]. Journal of Cleaner Production, 2015,97:124-133.
doi: 10.1016/j.jclepro.2014.04.006 |
[32] |
Shaheen S A, Zhang H, Martin E.Hangzhou public bicycle: Understanding early adoption and behavioral response to bikesharing in Hangzhou, China[J]. Transportation Research Record, 2011,2247(2247):34-41.
doi: 10.3141/2247-05 |
[33] |
Campbell A A, Cherry C R, Ryerson M S, et al.Factors influencing the choice of shared bicycles and shared electric bikes in Beijing[J]. Transportation Research Part C, 2016,67:399-414.
doi: 10.1016/j.trc.2016.03.004 |
[34] |
吴健生,李博,黄秀兰.小城市居民出行行为时空动态及驱动机制研究[J].地球信息科学学报,2017,19(2):176-184.
doi: 10.3724/SP.J.1047.2017.00176 |
[ Wu J S, Li B, Huang X L.Spatio-temporal dynamics and driving mechanisms of resident trip in small cities[J]. Journal of Geo-information Science, 2017,19(2):176-184. ]
doi: 10.3724/SP.J.1047.2017.00176 |
[1] | ZHAO Pengjun, CAO Yushu. Identifying Metro Trip Purpose using Multi-source Geographic Big Data and Machine Learning Approach [J]. Journal of Geo-information Science, 2020, 22(9): 1753-1765. |
[2] | PU Dongchuan, WANG Guizhou, ZHANG Zhaoming, NIU Xuefeng, HE Guojin, LONG Tengfei, YIN Ranyu, JIANG Wei, SUN Jiayue. Urban Area Extraction based on Independent Component Analysis and Random Forest Algorithm [J]. Journal of Geo-information Science, 2020, 22(8): 1597-1606. |
[3] | ZHU Shoujie, DU Shihong, LI Jun, SHANG Shuoshuo, DU Shouji. Estimating Population Distribution in Cities and Towns though Fusing Multi-source Spatial Data [J]. Journal of Geo-information Science, 2020, 22(8): 1607-1616. |
[4] | LI Wan, NIU Lu, CHEN Hong, WU Hua. Robust Downscaling Method of Land Surface Temperature by Using Random Forest Algorithm [J]. Journal of Geo-information Science, 2020, 22(8): 1666-1678. |
[5] | MAO Yaping, FANG Shifeng. Research of Reference Evapotranspiration's Simulation based on Machine Learning [J]. Journal of Geo-information Science, 2020, 22(8): 1692-1701. |
[6] | CUI Cheng, REN Hongyan, ZHAO Lu, ZHUANG Dafang. Street Space Quality Evaluation in Yuexiu District of Guangzhou City based on Multi-feature Fusion of Street View Imagery [J]. Journal of Geo-information Science, 2020, 22(6): 1330-1338. |
[7] | YANG Jiansi, LIU Shuai, WANG Yandong, LIAO Mingsheng. The Assessment and Analysis of the Phenomenon of Vacancy within Wuhan City Using Multi-Source Datasets [J]. Journal of Geo-information Science, 2020, 22(5): 997-1007. |
[8] | CAO Zetao, FANG Zidong, YAO Jin, XIONG Liyang. Loess Landform Classification based on Random Forest [J]. Journal of Geo-information Science, 2020, 22(3): 452-463. |
[9] | GUO Yunkai, ZHANG Xiaojiong, XU Min, LIU Yuling, QIAN Jia, ZHANG Qiong. Estimation Model of Equivalent Water Thickness in the Road Area [J]. Journal of Geo-information Science, 2020, 22(2): 308-315. |
[10] | GENG Renfang,FU Bolin,CAI Jiangtao,CHEN Xiaoyu,LAN Feiwu,YU Hangming,LI Qingxun. Object-Based Karst Wetland Vegetation Classification Method Using Unmanned Aerial Vehicle images and Random Forest Algorithm [J]. Journal of Geo-information Science, 2019, 21(8): 1295-1306. |
[11] | Bowei CHEN, Yong PANG, Zengyuan LI, Hao LU, Xiaojun LIANG. Photon-Counting LiDAR Point Cloud Data Filtering based on the Random Forest Algorithm [J]. Journal of Geo-information Science, 2019, 21(6): 898-906. |
[12] | Huihui CAI, Wei ZHU, Zixuan LI, Yuanyuan LIU, Longbin LI, Chang LIU. Prediction Method of Tungsten-molybdenum Prospecting Target Area based on Deep Learning [J]. Journal of Geo-information Science, 2019, 21(6): 928-936. |
[13] | Shen TAN, Bingfang WU, Xin ZHANG. Mapping Paddy Rice in the Hainan Province Using both Google Earth Engine and Remote Sensing Images [J]. Journal of Geo-information Science, 2019, 21(6): 937-947. |
[14] | Huijuan MA, Xiaohong GAO, Xiaotian GU. Random Forest Classification of Landsat 8 Imagery for the Complex Terrain Area based on the Combination of Spectral, Topographic and Texture Information [J]. Journal of Geo-information Science, 2019, 21(3): 359-371. |
[15] | Yao YAO, Shuliang REN, Junyi WANG, Qingfeng GUAN. Mapping the Fine-Scale Housing Price Distribution by Integrating a Convolutional Neural Network and Random Forest [J]. Journal of Geo-information Science, 2019, 21(2): 168-177. |
|