本文选取环长株潭城市群为研究区域,以Landsat TM影像解译后的土地利用数据、MODIS影像计算的植被指数,以及人口、经济和气候数据等为数据源,基于“压力-状态-响应”框架模型构建湿地生态安全评价指标体系对该区域2000-2010年湿地生态安全进行综合评价。结果表明:(1)环长株潭城市群2000、2005、2010年湿地生态安全指数均值分别为0.7268、0.7151和0.7196,湿地生态安全状态“良好”,生态安全等级程度为“较安全”。(2)环长株潭城市群区域差异性明显,一级湿地生态安全区主要分布在洞庭湖周边,二级湿地生态安全区沿主要河流分布,三级湿地生态安全区主要分布在2个或3个城市之间的交界区域。(3)研究期间环长株潭城市群湿地面积变化明显,该区域湿地总面积逐年减少;森林沼泽、草本沼泽、湖泊、河流、水田的斑块分维数均呈增加趋势;水库/坑塘、河流破碎度指数明显高于其他景观类型,湿地生态系统服务价值总体减少。在此基础上,从土地利用变化与转型、湿地景观结构与功能、自然因素等方面对影响该区域湿地生态安全的主要驱动因子进行了分析。结果表明,人类社会经济活动直接作用于湿地生态环境,通过改变区域景观和土地利用结构使湿地面积发生变化,直接影响湿地生态安全。气温、降水等气候因素通过改变水热状况和植被覆盖,间接影响湿地生态安全。针对该区域湿地生态安全存在的问题,建议在发展过程中正确处理好经济与生态环境之间的关系,尽可能减少人类活动对湿地生态环境的干扰。
叶面积指数表征叶片的疏密程度和冠层结构特征,体现植被光合、呼吸和蒸腾作用等生物物理过程的能力,是描述土壤-植被-大气之间物质和能量交换的关键参数。目前多种卫星传感器观测生成了多个区域和全球的叶面积指数标准产品。本文综述了基于光学遥感数据的叶面积指数反演进展:首先,介绍了叶面积指数的定义和在生态系统模拟中的作用;然后,阐述了基于光学遥感反演叶面积指数的基本原理;在此基础上,论述了基于植被指数经验关系和基于物理模型的两种主要遥感反演算法,讨论了2种算法的优点和存在的问题,并总结了现有的主要全球数据产品及其特点,论述了产品检验的方法和需要注意的问题;最后,总结了当前叶面积指数反演中存在的问题,并展望了其发展趋势和研究方向。
国内生产总值(GDP)是衡量地区经济发展水平的重要指标,GDP的空间化可以为灾害风险分析等多学科交叉研究提供基础数据。空间化代用数据的选择是社会经济统计数据空间化的关键,本文以京津冀地区作为研究区,将夜间灯光、全球人口密度(LandScan)和亚洲人口密度(AsiaPop)空间分布信息作为代用数据,将市级GDP统计数据空间展布到栅格单元,以绝对误差、相对误差和均方根误差为指标,利用县级统计数据对展布结果进行误差分析,并对比3种数据对GDP空间模拟的表达效果。结果表明:相对于夜间灯光和LandScan数据,AsiaPop模拟得到的综合误差最小;基于夜间灯光和LandScan的GDP空间展布误差格局比较接近,即存在经济较发达的市辖区GDP值被低估、市郊区县GDP被高估的误差“两极区”倾向,而基于AsiaPop的GDP空间展布误差格局与经济发展水平关系不密切。因此,利用单一代用数据很难合理地反映经济活动的空间分布,综合夜间灯光、人口密度、道路和建筑物等多源空间数据是提高GDP空间展布精度的发展趋势。
空天地一体化对地观测网不仅是最具发展前途的高新技术领域之一,也是保障国家安全、经济社会发展的重要基础设施。本文首先全面论述了对地观测网研究的主要理论问题、关键技术、发展现状和趋势;然后,介绍了国产卫星遥感数据的一体化综合快速处理技术,在此基础上论述了广义空间信息网格的概念和内涵;最后指出,需以提供快速、精确和实时的空间信息服务为目标,加快开展对地观测网的理论与技术研究,推进数字地球走向智慧地球的转变。
三维GIS是当今乃至未来GIS技术的主要标志性内容之一,它突破了空间信息在二维地图平面中单调表现的束缚,为各行各业以及人们的日常生活提供了更有效的辅助决策支持。本文重点介绍了三维GIS的数据模型、数据库管理和可视化分析等关键技术及其研究进展,并以武汉市为例展示了三维GIS对城市立体空间的整体表达,为大城市、全市域的三维数字城市建设奠定了基础,最后探讨了在智慧城市建设与城市安全中三维GIS将发挥日益重要的时空信息承载引擎与空间智能技术支撑作用。
同其他卫星相比,NOAA卫星搭载的AVHRR积雪产品,具有长达10 a的长时间序列数据集,能够应用于长时间、较大区域范围的积雪覆盖变化分析。由于不同卫星使用的反演算法,波谱宽度和大气订正等不完全相同,故需对不同卫星积雪产品数据集进行一致性检验,将卫星积雪产品更好地应用于气候分析研究。本文采用一种新的评估方法,对空间分辨率为0.05o×0.05o的AVHRR积雪产品与IMS和MOD10A1积雪产品,分别在空间和时间变化上进行对比分析,对AVHRR积雪产品数据集进行检验,发现AVHRR与MODIS积雪产品具有较好的一致性。
人类个体/群体移动特征是多学科共同关注的研究主题。移动定位、无线通讯和移动互联网技术的快速发展使得获取大规模、长时间序列、精细时空粒度的个体移动轨迹和相互作用定量化成为可能。同时,地理信息科学、统计物理学、复杂网络科学和计算机科学等多学科交叉也为人类移动性研究的定量化提供了有力支撑。本文首先系统总结了大数据时代开展人类移动性研究的多源异构数据基础和多学科研究方法,然后将人类移动性研究归纳为面向人和面向地理空间两大方向。面向人的研究侧重探索人类移动特性的统计规律,并建立模型解释相应的动力学机制,或分析人类活动模式,并预测出行或活动;面向地理空间的研究侧重从地理视角分析人类群体在地理空间中的移动,探索宏观活动和地理空间的交互特征。围绕这两大方向,本文评述了人类移动性的研究进展和存在问题,认为人类移动性研究在数据稀疏性、数据偏斜影响与处理、多源异构数据挖掘、机器学习方法等方面依然面临挑战,对多学科研究方法的交叉与融合提出了更高要求。
随着信息获取技术的快速发展,地理信息数据每天以TB级的数量增加。三维城市模型数据作为三维GIS的重要内容,在数字城市和智慧城市建设过程中发挥重要作用。由于三维城市模型数据结构复杂,其数据量具有海量性,因此,高效地对三维城市模型进行划分及存储,以满足数据的长效管理及三维GIS系统的快速可视化数据调度和空间辅助决策需求,成为近年的研究热点。以往的数据划分方法导致划分区域在数据调度中变化频繁,使数据更新和管理变得困难,需寻找一种更为稳定且具有普适性的数据划分方法。本文分析了现有三维城市模型数据划分方法的不足,提出了基于拓扑关系模型的大比例尺图幅划分方法,并对划分后三维模型数据进行统一命名编码;借助非关系数据库MongoDB强大的海量数据组织及高效的多并发访问功能,构建了MongoDB分片集群服务器;对三维城市模型数据进行了单元划分,并采用规则建模软件City Engine进行建模,得到三维城市模型,借助非关系数据库软件MongoDB进行数据存储实验。结果表明,基于拓扑关系模型的大比例尺图幅划分方法适用于三维城市模型数据划分,划分后数据的存储效率明显提高,MongoDB数据库的多并发访问效率具有良好的稳定性。
栅格计算因其具有简单的构架成为目前地学分析的主流模型,然而,由于栅格计算平均分配计算和存储资源的弱点,不仅容易产生冗余,更重要的是难以凸显研究对象的突变部分,从而使研究者有可能忽略地学现象的变化特征。为此,本文提出将时空点过程模型应用于地学研究。时空点过程不仅适用于模拟以点事件为基本单元的地学现象,而且由于大多数地学过程可以转化为时空点过程,故其具有更广泛的应用范围。因此,时空点过程不仅是一种数据模型,同时也是地学问题的分析方法,更是观察和理解地学问题的一种新视角。为了实现从点过程数据中提取模式,作者经过多年研究提出了时空点过程层次分解理论框架,该理论与信号处理理论中的谱分析思路类似,首先,假设任意点集为有限多个均匀点过程的叠加,然后,通过点局部密度表达工具K阶邻近距离,将空间点转换为混合概率密度函数,再应用优化方法将混合密度函数进行分解得到丛集点和噪声,最终利用密度相连原理从丛集点中提取模式。该理论框架可适用于绝大多数点集数据,初步实现了点集数据的“傅里叶变换”。
激光点云与光学影像是2种重要的遥感数据源,二者的融合能够实现优势互补,具有应用价值。点云与影像的配准是实现二者集成应用的基础,虽然经历了多年的发展仍存在许多问题有待解决。本文首先通过建立点云与影像配准问题的数学范式,将整个配准问题划分为观测值提取、配准模型选择和参数优化3部分,深入分析各部分所面临的难点与挑战;然后对现有的点云与影像配准方法进行回顾与总结,对比分析各类方法的优缺点及适用范围;最后展望了今后的发展方向进行了展望,为后续的研究提供参考。
网络文本蕴含大量隐式地理空间信息,为地理知识获取与知识服务提供了巨大潜能。地理知识图谱是将传统地理信息服务拓展到地理知识服务的关键,也是网络文本蕴含地理信息采集与处理的终极目标。本文系统评述了开放地理语义网、开放地理实体及关系抽取、地理语义网对齐、知识图谱存储方法等地理知识图谱相关主题的研究进展,从网络文本蕴含地理空间信息量与质量评价、地理信息语义理解、空间语义计算模型和异构地理语义网对齐等方面剖析了目前亟需解决的关键科学问题。
高分辨率遥感影像的目标分类与识别,是对地观测系统进行图像分析理解,以及自动目标识别系统提取目标信息的重要手段。本文综述了当前国内外在可见光、红外、合成孔径雷达和合成孔径声纳等遥感影像的目标分类与识别的关键技术和最新研究进展。首先,讨论了高分辨率遥感影像的目标分类与识别问题的主要研究层次和内容;其次,深入分析了高分辨率遥感影像目标分类与识别,在滤波降噪、特征提取、目标检测、场景分类、目标分类和目标识别的关键技术及其所存在的问题;最后,结合并行计算、神经计算和认知计算等技术,讨论了目标分类与识别的可行性方案。具体包括:(1)高性能并行计算在高分辨率遥感图像处理的主流技术,并给出了基于Hadoop+OpenMP+CUDA的高分辨率遥感影像混合并行处理架构;(2)深度学习对于提升目标分类和识别精度的应用前景,以及基于深度神经网络的多层次遥感影像目标识别方法;(3)认知计算在解决遥感影像大数据不确定性分析的模型与算法,并讨论了层次主题模型的多尺度遥感影像场景描述方案。此外,根据媒体神经认知计算的相关研究,探讨了遥感影像大数据的目标分类和识别的发展趋势和研究方向。
矢量地理数据的高效组织管理是空间数据应用的关键问题之一。矢量地理数据服务作为一种重要的公众空间信息服务,已经得到广泛应用。公众对矢量地理数据服务性能提出了越来越高的要求,包括实时响应、高并发、高吞吐量等。当前的矢量地理数据服务后台数据存储组织,通常基于磁盘和关系数据库,其在面对公众日益增长的需求时已经显得力不从心。本文提出了一种以内存数据库Redis的轻量级矢量地理组织方法,能在高并发情况下有效提高矢量地理数据服务性能。论文首先分析了Redis的存储机制,设计了矢量地理数据库的分层组织模型,利用Redis丰富的数据结构对矢量地理数据及其相关元数据进行存储管理,然后,以网格索引为例,设计了Redis的空间索引,最后,设计Redis的矢量数据引擎原型系统,并进行了实验验证。结果表明,Redis的矢量地理数据库显著提高了响应速度,且并发性能更好,可广泛应用于大型空间数据库前端高速缓存和高性能空间索引库。
时空轨迹分类旨在为一条轨迹预测类别。时空轨迹分类在城市规划、个性化用户推荐等方面具有重要应用价值,其过程主要包括轨迹数据预处理、特征提取、建立分类器3个阶段。本文综述了近年来时空轨迹分类的研究进展,首先对时空轨迹分类的过程进行概述;然后将时空轨迹分类算法按特征提取的方式分为基于运动特征的轨迹分类算法、基于分类规则的轨迹分类算法和基于图像信号分析的轨迹分类算法3类,分别论述了这些算法的基本思想和优缺点;之后对现有的轨迹分类算法从数据来源、分类器、特征提取方式等方面进行对比分析;最后讨论现有的时空轨迹分类算法面临的挑战。
受植被时相变化、传感器畸变、获取时刻大气条件等因素的影响,不同时间获取的遥感影像存在色彩差异,而逐波段的色彩归一化容易引起新的色彩畸变。因此,本文提出一种复合类别支持的多元线性回归遥感影像色彩归一化方法,在输入影像和参考影像逐波段高斯归一化的基础上,进行复合聚类,确定各像元的复合类别;在迭代去除变化像元的基础上,将类别中心作为控制点,建立多元线性回归方程,并据此对输入影像进行处理。2组影像的试验结果表明,本文方法相对于传统方法在整体精度、色彩保持等方面具有较大的优势。
随着遥感数据获取能力的日益增强,一方面导致遥感数据的多元化和海量化,使“存不起”的问题日益突出,另一方面由于缺少有效和高效的存储管理方法,难以及时发现终端应用所需的数据,使结果“存而无用”。本文围绕巨量、高吞吐、空间结构化的遥感影像数据及其基础土地信息产品的存储与管理问题,提出采用大数据架构的遥感资源存储管理方法,并基于MongoDB数据库实现了原型系统;通过使用PB量级数据进行试验,证明了该方法满足大数据时代对遥感矢栅数据的存储管理需求。
针对城市建成区提取过程中,仅依赖单一数据源导致精度不够的问题,本文基于面向对象分类方法和利用土地类型信息标准差统计变量,实现遥感影像中城市建城区边界的提取,并以该建成区为依据对河南省虞城县的城区空间扩张特征作了分析。实验中首先采用均值漂移分割算法对高分一号遥感影像实现分割,然后利用决策树分类算法实现土地利用类型分类,最后基于0.1 km × 0.1 km窗口统计土地利用类型标准差信息,获取建成区边界。面向实际应用,以河南省虞城县为例,采用高分一号影像获得虞城县2017年建成区数据,并基于该数据采用多个TM影像提取城区其他年份的建成区边界,实现河南省虞城县城区空间扩张特征分析。结果表明,本文方法获取的建成区边界精度较一般的监督分类提取边界有进一步的提高,精度达到89%。进而说明结合高分辨率影像提取多个年份的建成区数据的可靠性,在城市扩张研究中,对仅利用低空间分辨率提取精度不够问题和仅利用高分辨影像提取效率低等问题提供了较好的解决方案。
LiDAR作为一种主动式获取高精度地表几何信息的地形图测绘技术,其获取的点云具有较高的相对精度与绝对精度,可作为无控或稀少控制条件下(无人机)航空影像高精度几何定位的地理参考数据。影像几何定位所能达到的精度依赖于几何参考数据自身的精度,因此评价LiDAR点云的精度对于将其作为地理参考实现航空影像高精度几何定位,具有较强的理论价值与实践意义。本文提出了利用高精度数字线划图(DLG)作为几何参考评定机载LiDAR点云精度的方法。首先,通过比对DLG中高程注记点的高程与LiDAR点云中对应位置处的高程,实现LiDAR点云高程精度评定;然后,通过统计LiDAR墙面点在平面上的投影点到DLG房屋矢量轮廓线的距离,实现LiDAR点云平面精度评定。实验结果证明,本文试验区域LiDAR点云平面和高程精度分别可达到7.2 cm和8.3 cm,可作为大比例尺无人机航空遥感控制数据的有效选择。
城市交通拥堵严重制约其网络总体效率。开展检测交通拥堵点可有效识别网络瓶颈,以整治交通拥堵现象。对此,本文提出一种新的城市交通时空拥堵点检测的方法:即采用实时路况数据,通过定义时空关联,检测时空意义上长期性、规律性交通拥堵点。本文基于DBSCAN(Density-Based Spatial Clustering of Applications with Noise)算法,以成都市为试验区,实现了这种拥堵点检测方法。试验表明,该方法可快速、有效、准确地检测出城市道路严重拥堵路段,并确定其拥堵时空范围,为交通管理、交通拥堵机理分析、交通拥堵预测等提供参考。