Journal of Geo-information Science >
High Precision Extraction of Surface Deformation Information Based on Principal Component Spatiotemporal Analysis and Time-series InSAR: Taking Xuzhou as an Example
Received date: 2022-09-30
Revised date: 2023-01-18
Online published: 2023-12-05
Supported by
National Natural Science Foundation of China(42171312)
National Natural Science Foundation of China(42001409)
Jiangsu Geology & Mineral Exploration Bureau Science and Technology Plan Project(2021KY08)
Urban areas often suffer from varying degrees of land surface deformation due to infrastructure construction and resources exploitation, which threatens the safety of residents' lives and property. So regular monitoring of urban surface deformation is of great significance for preventing related geological disasters. However, urban surface deformation has the characteristics of small-scale and continuous-slow change, it is necessary to process the error carefully in order to improve the monitoring accuracy. This paper proposes a high-precision surface deformation extraction method combining the principal component spatiotemporal analysis and time-series Interferometric Synthetic Aperture Radar (InSAR). Through the mining and analysis of time-series InSAR signals, a surface deformation model combined with polynomial functions is constructed to realize the hierarchical estimation of error and noise signals. Then the high-precision, small-scale surface deformation information is extracted. Taking Xuzhou, a typical city prone to geological disasters, as the research area, the results show that the proposed method can accurately separate the surface deformation information and error in the time-series InSAR signal, and the deformation monitoring accuracy is 10%~57% higher than other existing methods. The deformation rate from 2018 to 2022 is about -17~35 mm/a in Xuzhou, which is mainly distributed in the urban area, along the subway and in the old goaf. In recent 8 years, urban construction has continuously triggered local subsidence areas, the secondary deformation of the old goaf can last for more than 6 years, and the surface of several mining areas is still in an unstable state. The results can provide important technical support and decision support for high-precision monitoring of urban surface deformation and prevention of potential geological disasters.
CHEN Yu , CHEN Si , LI Jie , LI Huaizhan , GAO Yandong , WANG Yong , DU Peijun . High Precision Extraction of Surface Deformation Information Based on Principal Component Spatiotemporal Analysis and Time-series InSAR: Taking Xuzhou as an Example[J]. Journal of Geo-information Science, 2023 , 25(12) : 2402 -2417 . DOI: 10.12082/dqxxkx.2023.220779
表1 徐州地区2018年8月19日—2022年3月31日SAR影像时间序列Tab. 1 Time series of SAR images in Xuzhou from August 19, 2018 to March 31, 2022 |
序号 | 成像日期 | 序号 | 成像日期 | 序号 | 成像日期 |
---|---|---|---|---|---|
1 | 2018.08.19 | 23 | 2019.12.24 | 45 | 2021.04.29 |
2 | 2018.08.31 | 24 | 2020.01.29 | 46 | 2021.05.11 |
3 | 2018.09.12 | 25 | 2020.02.22 | 47 | 2021.05.23 |
4 | 2018.10.06 | 26 | 2020.03.17 | 48 | 2021.06.28 |
5 | 2018.11.11 | 27 | 2020.04.22 | 49 | 2021.07.10 |
6 | 2018.12.05 | 28 | 2020.05.16 | 50 | 2021.08.03 |
7 | 2018.12.29 | 29 | 2020.06.09 | 51 | 2021.08.15 |
8 | 2019.01.10 | 30 | 2020.06.21 | 52 | 2021.09.08 |
9 | 2019.02.03 | 31 | 2020.07.15 | 53 | 2021.10.02 |
10 | 2019.02.27 | 32 | 2020.07.27 | 54 | 2021.10.14 |
11 | 2019.03.23 | 33 | 2020.08.20 | 55 | 2021.10.26 |
12 | 2019.04.16 | 34 | 2020.09.01 | 56 | 2021.11.07 |
13 | 2019.05.10 | 35 | 2020.09.25 | 57 | 2021.11.19 |
14 | 2019.06.15 | 36 | 2020.10.07 | 58 | 202112.01 |
15 | 2019.07.09 | 37 | 2020.10.31 | 59 | 2022.01.06 |
16 | 2019.07.21 | 38 | 2020.11.12 | 60 | 2022.01.18 |
17 | 2019.08.14 | 39 | 2020.12.06 | 61 | 2022.01.30 |
18 | 2019.08.26 | 40 | 2021.01.11 | 62 | 2022.02.11 |
19 | 2019.09.19 | 41 | 2021.01.23 | 63 | 2022.02.23 |
20 | 2019.10.01 | 42 | 2021.02.16 | 64 | 2022.03.07 |
21 | 2019.10.25 | 43 | 2021.03.12 | 65 | 2022.03.19 |
22 | 2019.11.06 | 44 | 2021.04.05 | 66 | 2022.03.31 |
表2 不同误差改正方法形变结果的误差分析Tab. 2 Error analysis of deformation results from different correction methods |
形变量/mm | 相对时空滤波提高比率/% | 相对GACOS法提高比率/% | ||||
---|---|---|---|---|---|---|
原始数据 | 时空滤波 | GACOS | 本方法 | |||
无形变区域 | 2.9 | 2.7 | 2.8 | 1.4 | 48.2 | 50.0 |
DAWU | 21.4 | 9.4 | 9.5 | 7.9 | 16.0 | 16.8 |
BNTG | 9.9 | 7.1 | 7.4 | 4.8 | 32.4 | 35.1 |
0001 | 32.7 | 18.5 | 15.0 | 7.9 | 57.3 | 47.3 |
0003 | 16.4 | 6.4 | 6.8 | 5.8 | 9.4 | 14.7 |
表3 各矿区位置及关闭时间Tab. 3 Location of each mine and their closure time |
矿区名称 | 所属区域 | 关闭时间/年 |
---|---|---|
庞庄煤矿 | 西北矿区 | 2012 |
夹河煤矿 | 西北矿区 | 2016 |
张小楼煤矿 | 西北矿区 | 2016 |
张集煤矿 | 西北矿区 | 2016 |
卧牛山煤矿 | 西部矿区 | 2008 |
新河煤矿 | 西部矿区 | 2008 |
权台煤矿 | 东北矿区 | 2014 |
旗山煤矿 | 东北矿区 | 2016 |
韩桥煤矿 | 东北矿区 | 2008 |
图9 徐州淮海国际港务区2018—2022年地表形变时空变化Fig. 9 Surface deformation in the Xuzhou Huaihai international port affair area from 2018 to 2022 |
[1] |
许才军, 张朝玉. 地壳形变测量与数据处理[M]. 武汉: 武汉大学出版社, 2009.
[
|
[2] |
|
[3] |
罗三明, 单新建, 朱文武, 等. 多轨PSInSAR监测华北平原地表垂直形变场[J]. 地球物理学报, 2014, 57(10):3129-3139.
[
|
[4] |
熊福文, 朱文耀. 长江三角洲地区地形变特征的GPS监测和分析[J]. 地球物理学报, 2007, 50(6):1719-1730.
[
|
[5] |
|
[6] |
|
[7] |
崔笃信, 王庆良, 李克, 等. 长白山天池火山近期形变场演化过程分析[J]. 地球物理学报, 2007, 50(6):1731-1739.
[
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
朱猛, 董少春, 尹宏伟, 等. 基于SBAS InSAR方法的苏州地区2007—2010年地表形变时空变化研究[J]. 地球信息科学学报, 2016, 18(10):1418-1427.
[
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
周东来, 孙亚军, 杨国勇, 等. 徐州市水文地质单元岩溶地下水循环系统分析[J]. 中国矿业大学学报, 2003, 32(1):96-99.
[
|
[26] |
杜培军, 单丹丹, 夏俊士, 等. 北京一号小卫星数据的城市景观格局监测分析——以徐州市城区为例[J]. 地球信息科学学报, 2010, 12(6):855-862.
[
|
[27] |
倪庆琳, 侯湖平, 丁忠义, 等. 基于生态安全格局识别的国土空间生态修复分区——以徐州市贾汪区为例[J]. 自然资源学报, 2020, 35(1):204-216.
[
|
[28] |
徐州市人民政府. 徐州市国民经济和社会发展第十四个五年规划和2035年愿景目标纲要[EB/OL]. http://www.xz.gov.cn/govxxgk/014051247/2021-05-07/cccf1a4f-d320-47d4-8254-2ed3c562d5c7.html2021-04-19.
[ Xuzhou People's Government. The "Fourteenth Five Year Plan" for Xuzhou's national economic and social development and the outline of vision and objectives for 2035[EB/OL]. http://www.xz.gov.cn/govxxgk/014051247/2021-05-07/cccf1a4f-d320-47d4-8254-2ed3c562d5c7.html2021-04-19. ]
|
[29] |
新华网. 习近平与江苏的故事[EB/OL]. https://baijiahao.baidu.com/s?id=1683256651521471033&wfr=spider&for=pc2020-11-13.
[ Xinhuanet. The story of Xi Jinping and Jiangsu[EB/OL]. https://baijiahao.baidu.com/s?id=1683256651521471033&wfr=spider&for=pc2020-11-13. ]
|
[30] |
江苏省人民政府. 江苏省“十四五”自然资源保护和利用规划[EB/OL]. http://www.jiangsu.gov.cn/art/2021/11/1/art_64797_10093344.html2021-11-10.
[ Jiangsu Province People's Government. The "Fourteenth Five Year Plan" for natural resources protection and utilization in Jiangsu Province[EB/OL]. http://www.jiangsu.gov.cn/art/2021/11/1/art_64797_10093344.html2021-11-10.]
|
[31] |
欧洲航天局[EB/OL]. https://scihub.copernicus.eu/
[European Space Agency[EB/OL]. https://scihub.copernicus.eu/
|
[32] |
|
[33] |
|
[34] |
|
[35] |
彭磊. 徐州西部关闭矿井地表次生形变InSAR监测与分析[D]. 徐州: 中国矿业大学, 2021.
[
|
[36] |
郑美楠, 邓喀中, 张宏贞, 等. 基于InSAR的关闭矿井地表形变监测与分析[J]. 中国矿业大学学报, 2020, 49(2):403-410.
[
|
[37] |
卞正富, 张燕平. 徐州煤矿区土地利用格局演变分析[J]. 地理学报, 2006, 61(4):349-358.
[
|
[38] |
邓喀中, 郑美楠, 张宏贞, 等. 关闭矿井次生沉陷研究现状及展望[J]. 煤炭科学技术, 2022, 50(5):10-20.
[
|
[39] |
张丽, 黄敬军, 许书刚, 等. 徐州城市规划区煤矿采空区稳定性评价[J]. 水文地质工程地质, 2017, 44(2):124-128.
[
|
/
〈 | 〉 |