基于多尺度时空聚类的共享单车潮汐特征挖掘与需求预测研究
|
姜晓, 白璐斌, 楼夏寅, 李梅, 刘晖
|
Usage Patterns Identification and Flow Prediction of Bike-sharing System based on Multiscale Spatiotemporal Clustering
|
JIANG Xiao, BAI Lubin, LOU Xiayin, LI Mei, LIU Hui
|
|
表5 LSTM模型预测社区单车需求结果评价
|
Tab. 5 Evaluation of LSTM model prediction results
|
|
社区 | 评价指标 | MAE | RMSE | PEARSON/% | AcR/% | 0 | 12.394 | 26.682 | 84.651 | 86.888 | 1 | 27.065 | 37.996 | 97.572 | 94.228 | 2 | 21.540 | 38.921 | 96.790 | 96.674 | 3 | 60.711 | 96.166 | 92.481 | 86.226 | 4 | 48.237 | 66.411 | 98.163 | 97.235 | 5 | 11.158 | 16.725 | 98.011 | 95.098 | 6 | 6.461 | 8.509 | 97.987 | 95.845 | 7 | 33.671 | 42.844 | 99.099 | 95.559 | 8 | 5.448 | 10.145 | 75.370 | 91.557 | 9 | 44.250 | 64.302 | 97.784 | 97.264 | 10 | 25.329 | 55.762 | 98.099 | 95.295 | 11 | 19.842 | 29.365 | 99.111 | 97.393 | 12 | 35.355 | 50.229 | 99.335 | 95.543 | 13 | 2.250 | 3.806 | 54.333 | 78.498 | 14 | 7.0785 | 9.752 | 95.637 | 93.854 | 15 | 7.211 | 10.692 | 92.511 | 93.463 | 16 | 9.106 | 17.276 | 78.129 | 89.304 | 17 | 9.171 | 19.647 | 87.105 | 92.711 | 18 | 59.250 | 108.202 | 95.537 | 87.758 | 19 | 45.013 | 70.014 | 97.275 | 96.156 | 20 | 15.644 | 29.260 | 98.862 | 97.189 | 21 | 33.316 | 47.215 | 99.282 | 95.957 | 22 | 49.750 | 79.096 | 90.956 | 76.763 | 23 | 11.092 | 22.382 | 68.255 | 83.070 | 24 | 1.671 | 2.315 | 82.898 | 73.008 | 均值 | 24.080 | 38.548 | 91.010 | 91.301 |
|
|
|