耦合卷积神经网络与注意力机制的无人机摄影测量果树树冠分割方法
|
何海清, 周福阳, 陈敏, 陈婷, 官云兰, 曾怀恩, 魏燕
|
Fruit Tree Canopy Segmentation by Unmanned Aerial Vehicle Photogrammetry Coupled on Convolutional Neural Network and Attention Mechanism
|
HE Haiqing, ZHOU Fuyang, CHEN Min, CHEN Ting, GUAN Yunlan, ZENG Huaien, WEI Yan
|
|
表2 不同网络模型的2D和2.5D数据树冠分割定量评价结果
|
Tab. 2 Quantitative evaluation results of 2D and 2.5D data crown segmentation for different network models (%)
|
|
方法 | 数据集 | OA | F1 | mIoU | 区域生长 | 2D | 80.11 | 77.12 | 74.94 | 分水岭算法 | 2D | 87.38 | 82.60 | 80.45 | FCN | 2D | 95.29 | 88.71 | 86.97 | 2.5D | 95.19 | 90.75 | 88.39 | BiseNet-V2 | 2D | 95.45 | 89.13 | 87.40 | 2.5D | 95.64 | 91.23 | 89.21 | PSPNet | 2D | 96.85 | 92.47 | 91.05 | 2.5D | 97.09 | 94.41 | 92.94 | EfficientNet-V2 | 2D | 96.89 | 92.80 | 91.47 | 2.5D | 96.75 | 93.99 | 92.16 | DANet | 2D | 96.90 | 92.57 | 91.17 | 2.5D | 97.15 | 94.73 | 93.08 | DeepLab-V3 | 2D | 97.15 | 93.26 | 91.85 | 2.5D | 97.06 | 94.56 | 92.88 | CSwin-Tiny | 2D | 97.08 | 93.29 | 91.96 | 2.5D | 97.26 | 94.35 | 92.95 | CNNAMNet | 2D | 97.20 | 94.62 | 93.03 | 2.5D | 97.57 | 95.49 | 94.05 |
|
|
|