面向遥感影像场景分类的类中心知识蒸馏方法
刘潇, 刘智, 林雨准, 王淑香, 左溪冰
Class-centric Knowledge Distillation for RSI Scene Classification
LIU Xiao, LIU Zhi, LIN Yuzhun, WANG Shuxiang, ZUO Xibing
表2
师生网络结构及输出层特征信息
Tab. 2
Network structure of T/S models and Information about the features of the output layer
网络名称
ResNet50
ResNet18
MobileNetV2
卷积池化层
7
×
7,64
,
s
t
r
i
d
e
2
+
3
×
3
m
a
x
p
o
o
l
,
s
t
r
i
d
e
2
3
×
3,32
,
s
t
r
i
d
e
2
卷积层1
1
×
1,64
3
×
3,64
1
×
1,256
×
3
3
×
3,64
3
×
3,64
×
3
1
×
1,64
3
×
3,64
1
×
1,256
×
3
输出层特征1
F
∈
R
56
×
56
×
64
F
∈
R
56
×
56
×
256
卷积层2
1
×
1,128
3
×
3,128
,
s
2
1
×
1,512
+
1
×
1,128
3
×
3,128
1
×
1,512
×
3
3
×
3,128
,
s
2
3
×
3,128
+
3
×
3,128
3
×
3,128
1
×
1,128
3
×
3,128
,
s
2
1
×
1,512
+
1
×
1,128
3
×
3,128
1
×
1,512
×
3
输出层特征2
F
∈
R
28
×
28
×
512
F
∈
R
28
×
28
×
128
F
∈
R
28
×
28
×
512
卷积层3
1
×
1,256
3
×
3,256
,
s
2
1
×
1,1024
+
1
×
1,256
3
×
3,256
1
×
1,1024
×
3
3
×
3,256
,
s
2
3
×
3,256
+
3
×
3,256
3
×
3,256
1
×
1,256
3
×
3,256
,
s
2
1
×
1,1024
+
1
×
1,256
3
×
3,256
1
×
1,1024
×
3
输出层特征3
F
∈
R
14
×
14
×
1024
F
∈
R
14
×
14
×
256
F
∈
R
14
×
14
×
1024
卷积层4
1
×
1
,
,
512
3
×
3,512
,
s
2
1
×
1,2048
+
1
×
1
,
,
512
3
×
3,512
1
×
1,2048
×
3
3
×
3,512
,
s
2
3
×
3,512
+
3
×
3,512
3
×
3,512
1
×
1
,
,
512
3
×
3,512
,
s
2
1
×
1,2048
+
1
×
1
,
,
512
3
×
3,512
1
×
1,2048
×
3
输出层特征4
F
∈
R
7
×
7
×
2048
F
∈
R
7
×
7
×
512
F
∈
R
7
×
7
×
2048
全局池化层
7
×
7
a
v
e
r
a
g
e
p
o
o
l
,
f
c
,
s
o
f
t
m
a
x