地球信息科学学报 ›› 2018, Vol. 20 ›› Issue (9): 1316-1326.doi: 10.12082/DQXXKX.2018.170121
张丽丽1,3,4(), 赵明伟2, 赵娜3,4, 岳天祥3,4,*(
)
收稿日期:
2017-03-29
修回日期:
2018-06-21
出版日期:
2018-09-25
发布日期:
2018-09-25
通讯作者:
岳天祥
E-mail:zhangll@lreis.ac.cn;yue@lreis.ac.cn
作者简介:
作者简介:张丽丽(1987-),女,博士,主要从事大气遥感、GIS应用研究。E-mail:
基金资助:
ZHANG Lili1,3,4(), ZHAO Mingwei2, ZHAO Na3,4, YUE Tianxiang3,4,*(
)
Received:
2017-03-29
Revised:
2018-06-21
Online:
2018-09-25
Published:
2018-09-25
Contact:
YUE Tianxiang
E-mail:zhangll@lreis.ac.cn;yue@lreis.ac.cn
Supported by:
摘要:
本文首次基于OCO-2卫星观测数据,采用高精度曲面建模(High Accuracy Surface Modeling, HASM)的方法来模拟大范围高精度的二氧化碳柱浓度(XCO2)的空间分布。首先,探讨分析HASM方法应用于模拟OCO-2卫星观测XCO2的空间分布的可行性。从2014年9月至2015年8月OCO-2观测的12个月的XCO2数据中,分别随机选取其各个月90%的XCO2数据用于空间插值,剩余10%作为精度验证点。自验证结果表明,12个月的平均绝对值误差为0.34 ppm。由此可见,HASM适用于模拟OCO-2卫星观测XCO2的空间分布。然后,采用HASM对OCO-2在2014年9月至2015年8月的各个月观测数据进行空间插值,获取空间分辨率为0.5°×0.5°的各个月均值XCO2的空间分布,同时基于地基观测TCCON( Total Carbon Column Observing Network)站的XCO2数据对HASM模拟结果进行交叉验证。验证结果表明,HASM模拟的XCO2与TCCON站对应观测数据相比,其平均绝对值误差为0.81 ppm,相关系数为0.88。因此,HASM在模拟OCO-2卫星观测的XCO2空间分布上具有很大的优势。
张丽丽, 赵明伟, 赵娜, 岳天祥. 基于OCO-2卫星观测模拟高精度XCO2的空间分布[J]. 地球信息科学学报, 2018, 20(9): 1316-1326.DOI:10.12082/DQXXKX.2018.170121
ZHANG Lili,ZHAO Mingwei,ZHAO Na,YUE Tianxiang. Modeling the Spatial Distribution of XCO2 with High Accuracy Based on OCO-2's Observations[J]. Journal of Geo-information Science, 2018, 20(9): 1316-1326.DOI:10.12082/DQXXKX.2018.170121
表1
陆地观测质量筛选的指标"
字段 | 下限(≥) | 上限(≤) |
---|---|---|
Warn level | N/A | 15 |
Outcome flag | N/A | 2 |
Preprocessors/h2o_ratio | 0.700 | 1.030 |
Preprocessors/co2_ratio | 0.995 | 1.025 |
Preprocessors/dp_apb | -15.00 | 5.00 |
Retrieval/dp | -5.00 | 10.0 |
Retrieval/aod_ice | N/A | 0.050 |
Reteieval/Aod_sulfate | N/A | 0.400 |
Retrieval/Aod_dust | 0.001 | 0.30 |
Retrieval/co2_grad_del | -70.0 | 70.0 |
Retrieval/albedo_2 | 0.10 | N/A |
Blended albedo(2.4*albedo_3-1.13*albedo_1) | N_A | 0.8 |
Dof_co2 | 1.8 | N/A |
Sounding/airmass | N/A | 3.6 |
表2
海洋观测质量筛选的指标"
字段 | 下限(≥) | 上限(≤) |
---|---|---|
Warn level | N/A | 15 |
Outcome flag | N/A | 2 |
Preprocessors/co2_ratio | 0.994 | 1.020 |
Preprocessors/dp_apb | N/A | 0.00 |
Retrieval/dp | -3.00 | 9.0 |
Retrieval/co2_grad_del | -30.0 | 5.0 |
Retrieval/albedo_slope_3*10^5 | 1.0 | 10.0 |
Retrieval/windspeed | 2.0 | N/A |
Sounding/snr_weak_co2 | 380 | N/A |
Sounding/airmass | N/A | 3.5 |
表3
2014年9月至2015年8月OCO-2观测数据的月统计"
时间 | 个数 | 最小值/ppm | 最大/ppm | 均值/ppm | 方差/ppm |
---|---|---|---|---|---|
2014-09 | 250 414 | 387.42 | 401.30 | 395.77 | 1.02 |
2014-10 | 34 356 | 391.60 | 401.01 | 395.53 | 0.89 |
2014-11 | 107 061 | 387.42 | 401.30 | 396.03 | 0.78 |
2014-12 | 380 597 | 390.13 | 403.80 | 396.45 | 0.84 |
2015-01 | 89 219 | 390.67 | 402.23 | 396.48 | 0.76 |
2015-02 | 147 529 | 390.13 | 403.02 | 396.34 | 0.96 |
2015-03 | 178 943 | 390.66 | 405.82 | 397.07 | 1.38 |
2015-04 | 47 624 | 392.88 | 404.49 | 397.31 | 1.38 |
2015-05 | 16 254 | 393.65 | 405.82 | 398.45 | 1.50 |
2015-06 | 73 722 | 388.68 | 405.83 | 398.59 | 1.55 |
2015-07 | 24 319 | 388.68 | 404.52 | 398.54 | 1.51 |
2015-08 | 28 152 | 390.42 | 405.83 | 398.18 | 1.41 |
[1] |
Yoshida Y, Ota1 Y, Eguchi1 N, et al. Retrieval algorithm for CO2 and CH4 column abundances from short-wavelength infrared spectral observations by the Greenhouse gases observing satellite[J]. Atmospheric Measurement Techniques, 2011,4(4):717-734.
doi: 10.5194/amt-4-717-2011 |
[2] |
Yoshida Y, Kikuchi N, Morino I, et al.Improvement of the retrieval algorithm for GOSAT SWIR XCO2 and XCH4 and their validation using TCCON data[J]. Atmospheric Measurement Techniques, 2013,6(6):1533-1547.
doi: 10.5194/amt-6-1533-2013 |
[3] |
Oshchepkov S, Bril A, Maksyutov S, et al.Detection of optical path in spectroscopic space-based observations of greenhouse gases: Application to GOSAT data processing[J]. Journal of Geophysical Research, 2011,116(D14): D14304.
doi: 10.1029/2010JD015352 |
[4] | Oshchepkov S, Bril A, Yokota T, et al.Effects of atmospheric light scattering on spectroscopic observations of greenhouse gases from space: Validation of PPDF-based CO2 retrievals from GOSAT[J]. Journal of Geophysical Research, 2012,117(D12):D12305. |
[5] | Guerlet S, Butz A, Schepers D, et al.Impact of aerosol and thin cirrus on retrieving and validating XCO2 from GOSAT shortwave infrared measurements[J]. Journal of Geophysical Research, 2013,118(10):4887-4905. |
[6] |
Buchwitz M, Reuter M, Bovensmann H, et al.Carbon Monitoring Satellite(CarbonSat): Assessment of atmospheric CO2 and CH4 retrieval errors by error parameterization[J]. Atmospheric Measurement Techniques, 2013,6(12):3477-3500.
doi: 10.5194/amt-6-3477-2013 |
[7] |
Yue T X, Zhang L L, Zhao M W, et al.Space- and ground-based CO2 measurements: A review[J]. China Science Earth Sciences, 2016,59(11):2089-2097.
doi: 10.1007/s11430-015-0239-7 |
[8] | IPCC (Intergovernmental Panel on Climate Change), Climate Change: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the IPCC[R]. 2014. |
[9] |
Bovensmann H, Buchwitz M, Burrows J P, et al.A remote sensing technique for global monitoring of power plant CO2 emissions from space and related applications[J]. Atmospheric Measurement Techniques, 2010,3(4):781-811.
doi: 10.5194/amt-3-781-2010 |
[10] |
Yoshida Y, Kikuchi N, Yokota T.On-orbit radiametric calibration of SWIR bands of TANSO-FTS onboard GOSAT[J]. Atmospheric Measurement Techniques, 2012,5(10):2515-2523.
doi: 10.5194/amt-5-2515-2012 |
[11] |
Frankenberg C, Pollock R, Lee R A M, et al. The Orbiting Carbon Observatory (OCO-2): Spectrometer performance evaluation using pre-launch direct sun measurements[J]. Atmospheric Measurement Techniques, 2015,8(1):301-313.
doi: 10.5194/amt-8-301-2015 |
[12] |
刘毅,蔡兆南,杨东旭,等.中国二氧化碳科学实验卫星高光谱探测仪光谱指标,影响分析及优化方案[J].科学通报,2013,58(27):2787-2789.
doi: 10.1360/972013-518 |
[ Liu Y, Cai Z N, Yang D X, et al.Optimization of the instrument configuration for Tan Sat CO2 spectrometer[J]. Chinese Science Bulletin, 2013,58(27):2787-2789. ]
doi: 10.1360/972013-518 |
|
[13] |
Mao J, Kawa S R.Sensitivity studies for space-based measurement of atmospheric total column carbon dioxide by reflected sunlight[J]. Applied Optics, 2004,43(4):914-927.
doi: 10.1364/AO.43.000914 |
[14] | Yue T X.Surface modeling: High accuracy and high speed methods[M]. Boca Raton: CRC Press, 2011. |
[15] | 岳天祥,杜正平,刘纪远.高精度曲面建模与误差分析[J].自然科学进展,2004,14(3):300-306. |
[ Yue T X, Du Z P, Liu J Y.High precision surface modeling and error analysis[J]. Progress in Natural Science, 2004,14(3):300-306. ] | |
[16] |
岳天祥,杜正平.高精度曲面建模与经典模型的误差比较分析[J].自然科学进展,2006,16(8):986-991.
doi: 10.3321/j.issn:1002-008X.2006.08.011 |
[ Yue T X, Du Z P.High accuracy surface modeling and comparative analysis of its errors[J]. Progress in Natural Science, 2006,16(8):986-991. ]
doi: 10.3321/j.issn:1002-008X.2006.08.011 |
|
[17] | Tian Y Z, Yue T X, Zhu L F, et al.Modeling population density using land cover data. Ecological Modelling[J], 2005,189(1-2):72-87. |
[18] |
史文娇,刘纪远,杜正平,等. 基于地学信息的土壤属性高精度曲面建模[J].地理学报,2011,66(11):1574-1581.
doi: 10.11820/dlkxjz.1996.03.002 |
[ Shi W J, Liu J Y, Du Z P, et al.High accuracy surface modeling of soil properties based on geographic information[J]. Acta Geographica Sinaica, 2011,66(11):1574-1581. ]
doi: 10.11820/dlkxjz.1996.03.002 |
|
[19] | 赵明伟,岳天祥,赵娜,等.基于HASM的中国森林植被碳储量空间分布模拟[J].地理学报,2013,68(9):1212-1224. |
[ Zhao M W, Yue T X, Zhao N, et al.Spatial distribution of forest vegetation carbon stock in China based on HASM[J]. Acta Geographica Sinaica, 2013,68(9):1212-1224. ] | |
[20] |
赵娜,岳天祥,王晨亮.1951-2010年中国季平均降水高精度曲面建模分析[J].地理科学进展,2013,32(1):49-58.
doi: 10.11820/dlkxjz.2013.01.005 |
[ Zhao N, Yue T X, Wang C L.Surface modeling of seasonal mean precipitation in China during 1951-2010[J]. Progress in Geography, 2013,32(1):49-58. ]
doi: 10.11820/dlkxjz.2013.01.005 |
|
[21] |
Crisp D, Pollock H R, Rosenberg R, et al.The on-orbit performance of the Orbiting Carbon Observatory-2(OCO-2) instrument and its radiometrically calibrated products[J]. Atmospheric Measurement Techniques, 2017,10(1):59-81.
doi: 10.5194/amt-10-59-2017 |
[22] | OCO-2 project, OCO-2 XCO2 Lite Product, Warn Levels, . and Bias Correction[R]. 2015. |
[23] |
Wunch D, Toon G C, Wennberg P O, et al.Calibration of the total carbon column observing network using aircraft profile data[J]. Atmospheric Measurement Techniques, 2010,3(5):1351-1362.
doi: 10.5194/amt-3-1351-2010 |
[24] |
Wunch D, Toon G C, Blavier J F L, et al. The total carbon column observing network[J]. Philosophical Transactions of the Royal Society, 2011, A369(1943):2087-2112.
doi: 10.1098/rsta.2010.0240 pmid: 21502178 |
[25] |
Oda T, Maksyutov S.A very high-resolution global fossil fuel CO2 emmision inventory derived using a point source database and satellite observations of nighttime lights[J]. Atmospheric Chemistry and Physics, 2011,11(2):543-556.
doi: 10.5194/acp-11-543-2011 |
[26] |
Keppel-Aleks G, Wennberg P O, O'Dell C W, et al. Towards constraints on fossil fuel emissions from total column carbon dioxide[J]. Atmospheric Chemistry and Physics, 2013,13(8):4349-4357.
doi: 10.5194/acp-13-4349-2013 |
[1] | 刘明杰, 徐卓揆, 郜允兵, 杨晶, 潘瑜春, 高秉博, 周艳兵, 周万鹏, 王凌. 基于机器学习的稀疏样本下的土壤有机质估算方法[J]. 地球信息科学学报, 2020, 22(9): 1799-1813. |
[2] | 崔晓临, 程贇, 张露, 卫晓庆. 基于DEM修正的MODIS地表温度产品空间插值[J]. 地球信息科学学报, 2018, 20(12): 1768-1776. |
[3] | 赵娜, 焦毅蒙. 基于TRMM降水数据的空间降尺度模拟[J]. 地球信息科学学报, 2018, 20(10): 1388-1395. |
[4] | 王梦艺, 盛业华, 黄一昀, 吕海洋, 黄毅. 电磁地理环境监测数据空间插值方法[J]. 地球信息科学学报, 2017, 19(7): 872-879. |
[5] | 李佳霖, 樊子德, 邓敏. 顾及风向和风速的空气污染物浓度插值方法[J]. 地球信息科学学报, 2017, 19(3): 382-389. |
[6] | 段家朕, 熊礼阳, 汤国安. 基岩露头采样密度对黄土古地形重建的影响[J]. 地球信息科学学报, 2016, 18(4): 461-468. |
[7] | 张涛, 李宝林, 赵娜, 许丽丽. 结合TRMM数据的区域降水高精度曲面建模研究[J]. 地球信息科学学报, 2015, 17(8): 895-901. |
[8] | 董志南, 郑拴宁, 赵会兵, 董仁才. 基于空间插值的风场模拟方法比较分析[J]. 地球信息科学学报, 2015, 17(1): 37-44. |
[9] | 林冰仙, 周良辰, 闾国年. 虚拟钻孔控制的三维地质体模型构建方法[J]. 地球信息科学学报, 2013, 15(5): 672-679. |
[10] | 王晨亮, 岳天祥*, 范泽孟, 赵娜, 孙晓芳. 高精度曲面建模的中国气候降尺度模型[J]. 地球信息科学学报, 2012, 14(5): 599-610. |
[11] | 余万里, 李宝林. 稀疏格网样点的国家尺度土壤属性制图方法与应用[J]. 地球信息科学学报, 2012, 14(1): 49-54. |
[12] | 宋丽琼, 田原, 邬伦, 张晖. 日降水量的空间插值方法与应用对比分析——以深圳市为例[J]. 地球信息科学学报, 2008, 10(5): 566-572. |
[13] | 徐成东, 孔云峰, 仝文伟. 线性加权回归模型的高原山地区域降水空间插值研究[J]. 地球信息科学学报, 2008, 10(1): 14-19. |
[14] | 岳天祥, 杜正平. 高精度曲面建模最佳表达形式的数值实验分析[J]. 地球信息科学学报, 2006, 8(3): 83-87. |
|