地球信息科学学报 ›› 2018, Vol. 20 ›› Issue (2): 167-175.doi: 10.12082/dqxxkx.2018.170233

• 地球信息科学理论与方法 • 上一篇    下一篇

主题模型与SVM组合的小尺度街区用地分类方法

文聪聪1,2(), 彭玲2,*(), 杨丽娜2, 池天河2   

  1. 1. 中国科学院大学, 北京 100049
    2. 中国科学院遥感与数字地球研究所, 北京 100101
  • 收稿日期:2017-05-23 修回日期:2017-11-12 出版日期:2018-03-02 发布日期:2018-03-02
  • 作者简介:

    作者简介:文聪聪(1994-),男,博士生,主要从事智慧城市、数据挖掘等研究。E-mail: giserwcc@126.com

  • 基金资助:
    国家科技支撑计划项目课题 (2015BAJ02B00)

Topic Model Combined with the SVM for Small Scale Land Use Classification

WEN Congcong1,2(), PENG Ling2,*(), YANG Lina2, CHI Tianhe2   

  1. 1. University of Chinese Academy of Sciences, Beijing 100049, China
    2. Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100101, China
  • Received:2017-05-23 Revised:2017-11-12 Online:2018-03-02 Published:2018-03-02
  • Contact: PENG Ling
  • Supported by:
    [ Foundation item: National Science and Technology Support Program, No.2015BAJ02B00

摘要:

城市用地分类作为城市规划重要的基础和依据,对城市资源配置、建设发展等具有重要意义。现有研究对用地分类都聚焦于“稀路网、大街区”的大尺度区域,随着城市发展,大尺度区域的规划模式造成了城市交通效率低下、土地低效率开发等问题,而小尺度的城市街区建设规划为解决上述问题提供了一种新的思路。为了充分挖掘现有交通大数据的潜在价值,更以高效地服务小尺度街区规划,本文将主题模型与支持向量机(SVM)相组合,提出一种面向小尺度街区的用地分类方法。本文以上海市黄浦区人民广场附近为研究区域,依据精细路网对研究区域划分,通过对一周(7天)出租车GPS数据处理,结合区域兴趣点(POI)数据,基于隐含狄利克雷分布(LDA)模型和SVM模型进行用地分类。在人工解译的分类图的基础上对本文方法进行精度评价,并基于百度地图地理数据进行结果验证。研究表明本文方法基于现有的交通大数据,实现了对小尺度街区用地分类,方法分类精度较高,在一定程度上可以节约人力物力,以便更好地服务于小尺度城市规划。

关键词: 主题模型, 用地分类, 出租车, 小尺度, 兴趣点, SVM

Abstract:

Urban land classification is the foundation of urban planning, whose result is of great significance to the allocation of urban resources and the development of urban construction. Previous researches of urban land classification are mainly focused on the study of macro-scale areas, which is characterized by “sparse road network and large block system”. However, with the development of cities, the planning model featured by macro-scale area has caused problems such as the low efficiency of urban traffic and land development. To solve these problems, the construction of urban blocks with small scales was put forward. To make full use of the potential value of the current big data of traffic in the block planning with small scales, this paper presents a land classification method for blocks with small scales through combining the topic modeling and support vector machine (SVM). The regions near People's Square of Huangpu District in Shanghai was taken as the study area. We firstly divided the study area according to fine road network, and then formed a regional mobility pattern through processing the data on the GPS of taxis in one week. By using the data on points of interest (POI), the model of Latent Dirichlet Allocation (LDA) and SVM model, the land use classes are identified. Accuracy assessment of the proposed method has been made based on classification map visually interpreted, and the obtained result has been approved by the geographic data of Baidu Map. The results indicated that this method enables the possibility of the land classification of small-scaled blocks, and could achieve high classification accuracy by utilizing the big data of traffic.

Key words: topic model, land use classification, float car, small scale, POI, SVM