地球信息科学学报 ›› 2018, Vol. 20 ›› Issue (2): 235-245.doi: 10.12082/dqxxkx.2018.170336
王成军1,2,3(), 毛政元1,2,3,*(
), 徐伟铭1,2,3, 翁谦1,2,3,4
收稿日期:
2017-07-22
修回日期:
2017-09-24
出版日期:
2018-03-02
发布日期:
2018-03-02
作者简介:
作者简介:王成军(1993-),男,江西萍乡人,硕士生,研究方向为计算机遥感图像处理,地理国情监测技术。E-mail:
基金资助:
WANG Chengjun1,2,3(), MAO Zhengyuan1,2,3,*(
), XU Weiming1,2,3, WENG Qian1,2,3,4
Received:
2017-07-22
Revised:
2017-09-24
Online:
2018-03-02
Published:
2018-03-02
Contact:
MAO Zhengyuan
Supported by:
摘要:
针对高分辨率遥感影像变化检测结果较破碎,易产生椒盐噪声、监督训练过程中人工标注成本较高、训练样本冗余以及大量未标注样本信息未有效利用等问题,提出一种超像素与主动学习相结合的高分辨率遥感影像变化检测方法。利用超像素分割算法得到超像素对象,提取其光谱和纹理特征;引入并借助主动学习样本选择策略充分利用未标注样本信息,挖掘不确定性最大、最易错分的样本交由用户人工标注;为保证所选样本的多样性,加入基于余弦角距离的样本相似性度量,以减少样本间信息冗余,在减轻人工标注负担的同时获得良好的分类性能。通过对2组不同场景的遥感影像的实验,表明本文提出的2种方法能够在标注少量训练样本的情况下获得较好的变化检测结果,且加入样本相似性度量的变化检测方法在有效减少人工标注成本和训练样本冗余的同时,能够更快地达到收敛、提升检测质量。
王成军, 毛政元, 徐伟铭, 翁谦. 超像素与主动学习相结合的遥感影像变化检测方法[J]. 地球信息科学学报, 2018, 20(2): 235-245.DOI:10.12082/dqxxkx.2018.170336
WANG Chengjun,MAO Zhengyuan,XU Weiming,WENG Qian. Change Detection Approach for High Resolution Remotely Sensed Images Based on Superpixel and Active Learning[J]. Journal of Geo-information Science, 2018, 20(2): 235-245.DOI:10.12082/dqxxkx.2018.170336
[1] | Du P J, Liu S C.Change detection from multi-temporal remote sensing images by integrating multiple features[J]. Journal of Remote Sensing, 2012,16(4):663-677 |
[2] | Singh A.Digital change detection techniques using remotely sensed data[J]. International Journal of Remote Sensing, 1988,10(6):989-1003. |
[3] | 黄亮,左小清,於雪琴.遥感影像变化检测方法探讨[J].测绘科学,2014,38(4):203-206. |
[Huang L, Zuo X Q, Yu X Q.Review on change detection methods of remote sensing images[J]. Science of Surveying and Mapping, 2014,38(4):203-206. ] | |
[4] |
Liu S C, Du P J, Chen S.A novel change detection method of multi-resolution remotely sensed images based on the decision level fusion[J]. Journal of Remote Sensing, 2011(4):846-862.
doi: 10.1155/2011/531540 |
[5] |
佃袁勇,方圣辉,姚崇怀.多尺度分割的高分辨率遥感影像变化检测[J].遥感学报,2016,20(1):129-137.
doi: 10.11834/jrs.20165074 |
[Dian Y Y, Fang S H, Yao C H.Change detection for high-resolution images using multilevel segment method[J]. Journal of Remote Sensing, 2016,20(1):129-137. ]
doi: 10.11834/jrs.20165074 |
|
[6] | Ren X, Malik J.Learning a classification model for segmentation[C]// IEEE International Conference on Computer Vision, 2003. Proceedings. IEEE, 2003:10-17. |
[7] |
宋熙煜,周利莉,李中国,等.图像分割中的超像素方法研究综述[J].中国图象图形学报,2015,20(5):599-608.
doi: 10.11834/jig.20150502 |
[Song X Y, Zhou L L, Li Z G, et al.Review on super-pixel methods in image segmentation[J]. Journal of Image and Graphics, 2015,20(5):0599-0608. ]
doi: 10.11834/jig.20150502 |
|
[8] |
Shi J, Malik J.Normalized Cuts and Image Segmentation[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2000,22(8):888-905.
doi: 10.1109/34.868688 |
[10] | Moore A P, Prince S J D, Warrell J, et al. Superpixel lattices[C]// Computer Vision and Pattern Recognition. IEEE Conference on. IEEE, 2008:1-8. |
[11] | Liu M Y,Tuzel O,Ramalingam S, et al.Entropy rate superpixel segmentation[C]// Computer Vision and Pattern Recognition. IEEE, 2011:2097-2104. |
[12] |
Vincent L, Soille P. Soille, P.Watersheds in digital spaces: an efficient algorithm based on immersion simulations[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 1991,13(6):583-598.
doi: 10.1109/34.87344 |
[13] |
Levinshtein A,Stere A, Kutulakos K N, et al.TurboPixels: Fast superpixels using geometric flows[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2009,31(12):2290-2297.
doi: 10.1109/TPAMI.2009.96 pmid: 19834148 |
[14] |
Achanta R, Shaji A, Smith K, et al.SLIC superpixels compared to State-of-the-Art superpixel methods[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2012,34(11):2274-2282.
doi: 10.1109/TPAMI.2012.120 pmid: 22641706 |
[15] | Hsu C Y, Ding J J.Efficient image segmentation algorithm using SLIC superpixels and boundary-focused region merging[C]// Communications and Signal Processing. IEEE, 2014:1-5. |
[16] | Zhang X, Cahill N D.SLIC Superpixels for efficient graph-based dimensionality reduction of hyperspectral imagery[C]// SPIE Defense + Security. International Society for Optics and Photonics, 2015. |
[17] |
Barreto T L M, Rosa R A S, Wimmer C, et al. Classification of detected changes from multitemporal High-Res Xband SAR Images: Intensity and texture descriptors from super pixels[J]. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2016,9(12):5436-5448.
doi: 10.1109/JSTARS.2016.2621818 |
[18] |
Toro C, Martín C, Pedrero Á, et al.Superpixel-based roughness measure for multispectral satellite image segmentation[J]. Remote Sensing, 2015,7(11):14620-14645.
doi: 10.3390/rs71114620 |
[19] |
Csillik O.Fast Segmentation and classification of very high resolution remote sensing data using SLIC superpixels[J]. Remote Sensing, 2017,9(3):243.
doi: 10.3390/rs9030243 |
[17] | 吴健,盛胜利,赵朋朋,等.最小差异采样的主动学习图像分类方法[J].通信学报,2014(1):107-114. |
[Wu J, Sheng S L, Zhao P P, et al.Minimal difference sampling for active learning image classification[J]. Journal on Communications, 2014(1):107-114. ] | |
[20] |
田彦平,陶超,邹峥嵘,等.主动学习与图的半监督相结合的高光谱影像分类[J].测绘学报,2015,44(8):919-926.
doi: 10.11947/j.AGCS.2015.20140221 |
[Tian Y P, Tao C, Zou Z R,et al.Semi-supervised graph-based hyperspectral image classification with active learning[J].Acta Geodaetica et Cartographica Sinica, 2015,44(8):919-926. ]
doi: 10.11947/j.AGCS.2015.20140221 |
|
[21] |
陈荣,曹永锋,孙洪.基于主动学习和半监督学习的多类图像分类[J].自动化学报,2011,37(8):954-962.
doi: 10.3724/SP.J.1004.2011.00954 |
[Chen R, Cao Y F, Sun H.Multi-class image classification with active learning and semi-supervised learning[J]. Acta Automatica Sinica, 2011,37(8):954-962. ]
doi: 10.3724/SP.J.1004.2011.00954 |
|
[22] |
Tuia D, Ratle F, Pacifici F, et al.Active learning methods for remote sensing image classification[J]. IEEE Transactions on Geoscience & Remote Sensing, 2009,47(7):2218-2232.
doi: 10.1109/TGRS.2008.2010404 |
[23] |
Pasolli E, Melgani F, Tuia D, et al.SVM active learning approach for image classification using spatial information[J]. IEEE Transactions on Geoscience & Remote Sensing, 2013,52(4):2217-2233.
doi: 10.1109/TGRS.2013.2258676 |
[24] |
Tuia D, Volpi M, Copa L, et al.A Survey of active learning algorithms for supervised remote sensing image classification[J]. IEEE Journal of Selected Topics in Signal Processing, 2011,5(3):606-617.
doi: 10.1109/JSTSP.2011.2139193 |
[25] |
Persello C, Bruzzone L.Active and semisupervised learning for the classification of remote sensing images[J]. IEEE Transactions on Geoscience & Remote Sensing, 2014,52(11):6937-6956.
doi: 10.1109/TGRS.2014.2305805 |
[26] | Brinker K.Incorporating diversity in active learning with support vector machines[C]// Machine Learning, Proceedings of the Twentieth International Conference. DBLP, 2003:59-66. |
[27] | 汤玉奇. 面向对象的高分辨率影像城市多特征变化检测研究[D].武汉:武汉大学,2013. |
[Tang Y Q.Object-oriented change detection with multi-feature in urban high-resolution remote sensing imagery[D]. Wuhan: Wuhan University, 2013. ] | |
[28] | Hu Z, Zou Q, Li Q.Watershed superpixel[C]// IEEE International Conference on Image Processing. IEEE, 2015. |
[1] | 高建文, 管海燕, 彭代锋, 许正森, 康健, 季雅婷, 翟若雪. 基于局部-全局语义特征增强的遥感影像变化检测网络模型[J]. 地球信息科学学报, 2023, 25(3): 625-637. |
[2] | 于明洋, 陈肖娴, 张文焯, 刘耀辉. 融合网格注意力阀门和特征金字塔结构的高分辨率遥感影像建筑物提取[J]. 地球信息科学学报, 2022, 24(9): 1785-1802. |
[3] | 赵祥, 王涛, 张艳, 郑迎辉, 张昆, 王龙辉. 基于改进DeepLabv3+孪生网络的遥感影像变化检测方法[J]. 地球信息科学学报, 2022, 24(8): 1604-1616. |
[4] | 张华, 郑祥成, 郑南山, 史文中. 基于MAEU-CNN的高分辨率遥感影像建筑物提取[J]. 地球信息科学学报, 2022, 24(6): 1189-1203. |
[5] | 焦洋洋, 刘平芝, 熊顺, 徐道柱. 基于自然格网索引的多尺度面实体增量级联更新方法[J]. 地球信息科学学报, 2022, 24(5): 851-863. |
[6] | 陈振, 陈芸芝, 吴婷, 李佳优. 面向高分遥感影像道路提取的轻量级双注意力和特征补偿残差网络模型[J]. 地球信息科学学报, 2022, 24(5): 949-961. |
[7] | 邵攀, 范红梅, 高梓昂. 基于自适应半监督模糊C均值的遥感变化检测[J]. 地球信息科学学报, 2022, 24(3): 508-521. |
[8] | 代文, 陈凯, 王春, 李敏, 陶宇. 顾及DEM误差空间自相关的地形变化检测方法[J]. 地球信息科学学报, 2022, 24(12): 2297-2308. |
[9] | 韩特, 汤玉奇, 邹滨, 冯徽徽, 张芳艳. 基于分层极限学习机影像转换的多源影像变化检测方法[J]. 地球信息科学学报, 2022, 24(11): 2212-2224. |
[10] | 陈赛楠, 蒋弥. Sentinel-1 SAR在洪水范围提取与极化分析中的应用研究[J]. 地球信息科学学报, 2021, 23(6): 1063-1070. |
[11] | 施海霞, 韦玉春, 徐晗泽宇, 周爽, 程琪. 高分遥感图像相对辐射校正中的伪不变地物自动提取和优化选择[J]. 地球信息科学学报, 2021, 23(5): 903-917. |
[12] | 唐璎, 刘正军, 杨懿, 顾海燕, 杨树文. 基于特征增强和ELU的神经网络建筑物提取研究[J]. 地球信息科学学报, 2021, 23(4): 692-709. |
[13] | 郭紫甜, 王春梅, 刘欣, 庞国伟, 朱梦阳, 王晋卿. 基于小流域抽样单元的中国FROM-GLC30数据精度评价[J]. 地球信息科学学报, 2021, 23(3): 524-535. |
[14] | 李传林, 黄风华, 胡威, 曾江超. 基于Res_AttentionUnet的高分辨率遥感影像建筑物提取方法[J]. 地球信息科学学报, 2021, 23(12): 2232-2243. |
[15] | 储国中, 李蒙蒙, 汪小钦. 融合高度特征的高分遥感影像多尺度城市建筑类型分类[J]. 地球信息科学学报, 2021, 23(11): 2073-2085. |
|