地球信息科学学报 ›› 2018, Vol. 20 ›› Issue (2): 254-267.doi: 10.12082/dqxxkx.2018.170381
所属专题: 气候变化与地表过程
张星星1,2(), 吕宁1,3,*(
), 姚凌1,3, 姜侯1,2
收稿日期:
2017-08-17
修回日期:
2017-10-17
出版日期:
2018-03-02
发布日期:
2018-03-02
通讯作者:
吕宁
E-mail:zhangxx.15s@igsnrr.ac.cn;ning.robin@gmail.com
作者简介:
作者简介:张星星(1992-),男,安徽宿松人,硕士生,主要从事地表太阳辐射反演研究。E-mail:
基金资助:
ZHANG Xingxing1,2(), LV Ning1,3,*(
), YAO Ling1,3, JIANG Hou1,2
Received:
2017-08-17
Revised:
2017-10-17
Online:
2018-03-02
Published:
2018-03-02
Contact:
LV Ning
E-mail:zhangxx.15s@igsnrr.ac.cn;ning.robin@gmail.com
Supported by:
摘要:
利用2000-2009年中国气象局(CMA)地表太阳辐射台站资料,对欧洲中期天气预报中心(ECMWF)地表太阳下行短波辐射产品进行多时间尺度的计算与分析,检验ECMWF地表辐射产品对于中国地区太阳辐射特征的表现。本文通过聚类分析将中国地区分为8个区域,考虑到ECMWF大气因素对ECMWF地表辐射的影响和大气因子分布的空间异质性,引入地理探测器对ECMWF再分析辐射产品的时空误差进行定量分析,来判明影响ECMWF辐射精度的主要大气因子。结果表明:总体上看,ECMWF地表太阳辐射要高于地面观测数据,月均偏差为18.28W/m2;ECMWF地表太阳辐射表现出季节性差异,夏秋季节明显好于春冬季节,相对偏差较大的数据集中分布在12、1、2和3月,相对偏差较小的数据集中分布在6、7、8和9月;不同区域在冬季和夏季的主导大气影响因子不同,夏季中国西北(1区)、高原(3区)、西南(4区)和四川盆地(5区)地区主导影响因子都是气溶胶,东南(6区)地区的主导影响因子是地表反照率和气溶胶,中东部地区(7区)的主导影响因子是云覆盖率和气溶胶,但是因子解释较小,分别为0.0228和0.0202,东北地区(8区)4个因子均未通过显著性系数检验,因子对相对偏差的变化影响不显著;冬季中国西北(1区)、高原(3区)、中东(7区)、东北(8区)和四川盆地(5区)地区的主导影响因子都是云覆盖率,西南(5区)和东南(6区)地区的辐射主要受到气溶胶的影响。
张星星, 吕宁, 姚凌, 姜侯. ECMWF地表太阳辐射数据在我国的误差及成因分析[J]. 地球信息科学学报, 2018, 20(2): 254-267.DOI:10.12082/dqxxkx.2018.170381
ZHANG Xingxing,LV Ning,YAO Ling,JIANG Hou. Error Analysis of ECMWF Surface Solar Radiation Data in China[J]. Journal of Geo-information Science, 2018, 20(2): 254-267.DOI:10.12082/dqxxkx.2018.170381
表2
GSR数据2000-2009年未通过物理阈值测试每月天数分布"
月份 | 总数 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | ||
超过上限 | 75 | 60 | 216 | 307 | 477 | 330 | 276 | 171 | 123 | 138 | 100 | 55 | 2328 |
低于下限 | 695 | 516 | 397 | 305 | 323 | 298 | 201 | 259 | 364 | 436 | 510 | 539 | 4843 |
通过测试 | 29 920 | 27 569 | 30 077 | 29 088 | 29 890 | 29 072 | 30 213 | 30 260 | 29 213 | 30 116 | 29 090 | 30 096 | 354 604 |
错误百分率/% | 2.5090 | 2.2896 | 1.9974 | 2.0606 | 2.6067 | 2.1145 | 1.5543 | 1.4011 | 1.6397 | 1.8703 | 2.0539 | 1.9355 | 1.9800 |
表3
中国各个区域因子解释力"
分区 | 夏季(6、7、8和9月) | 冬季(12、1、2和3月) | |||||||
---|---|---|---|---|---|---|---|---|---|
气溶胶 | 云覆盖率 | 水汽含量 | 地表反照率 | 气溶胶 | 云覆盖率 | 水汽含量 | 地表反照率 | ||
1 | 0.3405 | 0.0516(N) | 0.0460 | 0.0302(N) | 0.0196(N) | 0.2085 | 0.0124(N) | 0.0184(N) | |
2 | 0.4953 | 0.2546 | 0.2210 | 0.0497(N) | 0.4457 | 0.0587(N) | 0.4952 | 0.1080(N) | |
3 | 0.3405 | 0.0202(N) | 0.0432(N) | 0.1789 | 0.0843(N) | 0.2396 | 0.0899 | 0.0477(N) | |
4 | 0.3753 | 0.2221 | 0.2507 | 0.5970(N) | 0.4899 | 0.1088 | 0.1173 | 0.0266(N) | |
5 | 0.3258 | 0.0426(N) | 0.1047 | 0.1941 | 0.1128 | 0.1174 | 0.0933 | 0.0504(N) | |
6 | 0.2278 | 0.0550(N) | 0.0920 | 0.2556 | 0.2074 | 0.0284(N) | 0.0091(N) | 0.0211(N) | |
7 | 0.0202 | 0.0228 | 0.0125 | 0.0173 | 0.0626 | 0.1225 | 0.0961 | 0.0072(N) | |
8 | 0.0502(N) | 0.0522(N) | 0.0355(N) | 0.0965(N) | 0.1113 | 0.2828 | 0.0058(N) | 0.0304(N) |
[1] | Pinker R T, Tarpley J D, Laszlo I, et al.Surface radiation budgets in support of the GEWEX Continental-Scale International Project (GCIP) and the GEWEX Americas Prediction Project(GAPP), including the North American Land Data Assimilation System(NLDAS) project[J].Journal of Geophysical Research Atmospheres, 2003,108(D22):GCP5-1. |
[2] |
Huang G, Li X, Ma M, et al.High resolution surface radiation products for studies of regional energy, hydrologic and ecological processes over Heihe river basin, northwest China[J]. Agricultural and Forest Meteorology, 2016,230:67-78.
doi: 10.1016/j.agrformet.2016.04.007 |
[3] |
Betts A K, Zhao M, Dirmeyer P A, et al.Comparison of ERA40 and NCEP/DOE near-surface data sets with other ISLSCP-II data sets[J]. Journal of Geophysical Research Atmospheres, 2006,111(D22).
doi: 10.1029/2006JD007174 |
[4] |
Wang K, Dickinson R E.Global atmospheric downward longwave radiation at the surface from ground-based observations, satellite retrievals, and reanalysis[J]. Reviews of Geophysics, 2013,51(2):150-185.
doi: 10.1002/rog.20009 |
[5] |
Brotzge J A.A two-Year comparison of the surface water and energy budgets between two OASIS sites and NCEP NCAR reanalysis data[J]. Journal of Hydrometeorology, 2004,5(2):311.
doi: 10.1175/1525-7541(2004)005<0311:ATCOTS>2.0.CO;2 |
[6] |
Decker M, Brunke M A, Wang Z, et al.Evaluation of the Reanalysis Products from GSFC, NCEP, and ECMWF Using Flux Tower Observations[J]. Journal of Climate, 2010,25(25):1916-1944.
doi: 10.1175/JCLI-D-11-00004.1 |
[7] |
Lohmann S, Schillings C, Mayer B, et al.Long-term variability of solar direct and global radiation derived from ISCCP data and comparison with reanalysis data[J]. Solar Energy, 2006,80(11):1390-1401.
doi: 10.1016/j.solener.2006.03.004 |
[8] | 谢爱红,ALLISON I,效存德,等.不同再分析气温在东南极中山站-Dome A断面的适用性评价[J].中国科学:地球科学,2014(1):156-68. |
[ Xie A H, Allison I, Xiao C D, et al.Assessment of air temperatures from different meteorological reanalyses for the East Antarctic region between Zhoushan and Dome A[J]. Science China: Earth Science, 2014(1):156-168. ] | |
[9] |
邓小花,翟盘茂,袁春红.国外几套再分析资料的对比与分析[J].气象科技,2010,38(1):1-8.
doi: 10.3969/j.issn.1671-6345.2010.01.001 |
[ Deng X H, Zhai P M, Yuan C H.Comparative analysis of NCEP/NCAR, ECMWF and JMA reanalysis data[J]. Meteorological Science and Technology, 2010,38(1):1-8. ]
doi: 10.3969/j.issn.1671-6345.2010.01.001 |
|
[10] |
Wang A, Zeng X.Evaluation of multireanalysis products with in situ observations over the Tibetan Plateau[J]. Journal of Geophysical Research Atmospheres, 2012,117(D5):214-221.
doi: 10.1029/2011JD016553 |
[11] |
Xia X A, Wang P C, Chen H B, et al.Analysis of downwelling surface solar radiation in China from National Centers for Environmental Prediction reanalysis, satellite estimates, and surface observations[J]. Journal of Geophysical Research Atmospheres, 2006,111(D9):2105-2117.
doi: 10.1029/2005JD006130 |
[12] |
You Q, Sanchez-lorenzo A, WILD M, et al. Decadal variation of surface solar radiation in the Tibetan Plateau from observations, reanalysis and model simulations[J]. Climate Dynamics, 2013,40(7-8):2073-2086.
doi: 10.1007/s00382-012-1383-3 |
[13] |
Yang R, Ek M, Meng J.Surface water and energy budgets for the mississippi river basin in three NCEP reanalyses[J]. Journal of Hydrometeorology, 2015,16(2):857-873.
doi: 10.1175/JHM-D-14-0056.1 |
[14] |
Brotzge J A.A two-year comparison of the surface water and energy budgets between two OASIS sites and NCEP NCAR Reanalysis Data[J]. Journal of Hydrometeorology, 2004,5(2):311.
doi: 10.1175/1525-7541(2004)005<0311:ATCOTS>2.0.CO;2 |
[15] |
Zhang X, Liang S, Wang G, et al.Evaluation of the reanalysis surface incident shortwave radiation products from NCEP, ECMWF, GSFC, and JMA using satellite and surface observations[J]. Remote Sensing, 2016,8(3):225.
doi: 10.3390/rs8030225 |
[16] | Simmons A, Uppala S, Dee D, et al.ERAInterim: New ECMWF reanalysis products from 1989 onwards[J]. ECMWF Newsl. ECMWF Read. UK, 2007,110:25-35. |
[17] |
Kato S, Loeb N G, Rose F G, et al.Surface irradiances consistent with CERES-Derived Top-of-Atmosphere shortwave and longwave irradiances[J]. Journal of Climate, 2013,26(9):2719-2740.
doi: 10.1175/JCLI-D-12-00436.1 |
[18] |
Mlawer E J, Taubman S J, Brown P D, et al.Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave[J]. Journal of Geophysical Research Atmospheres, 1997,102(14):16663-16682.
doi: 10.1029/97JD00237 |
[19] |
Wielicki B A, Barkstrom B R, Baum B A, et al.Clouds and the Earth's Radiant Energy System (CERES):Algorithm overview[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998,36(4):1127-1141.
doi: 10.1109/36.701020 |
[20] |
Younes S, Claywell R, Muneer T.Quality control of solar radiation data: Present status and proposed new approaches[J]. Energy 2005,30(9):1533e49.
doi: 10.1016/j.energy.2004.04.031 |
[21] |
Shi G Y, Hayasaka T, Ohmura A, et al.Data quality assessment and the long-term trend of ground solar radiation in China[J]. Journal of Applied Meteorology and Climatology, 2007,47(4):1006-1016.
doi: 10.1175/2007JAMC1493.1 |
[22] |
Elminir H K, Azzam Y A, Younes F I.Prediction of hourly and daily diffuse fraction using neural network, as compared to linear regression models[J]. Journal of Energy, 2007,32(8):1513-1523.
doi: 10.1016/j.energy.2006.10.010 |
[23] |
Yorukoglu M, Celik A N.A critical review on the estimation of daily global solar radiation from sunshine duration[J]. Energy Conversion and Management, 2006,47(15-16):2441-2450.
doi: 10.1016/j.enconman.2005.11.002 |
[24] |
Moradi I.Quality control of global solar radiation using sunshine duration hours[J]. Energy, 2009,34(1):1-6.
doi: 10.1016/j.energy.2008.09.006 |
[25] |
Tang W, Yang K, He J, et al.Quality control and estimation of global solar radiation in China[J]. Solar Energy, 2010,84(3):466-475.
doi: 10.1016/j.solener.2010.01.006 |
[26] |
Geiger M, Diabate L, Menard L, et al.A web service for controlling the quality of measurements of global radiation[J]. Solar Energy, 2002,73(6):475-480.
doi: 10.1016/S0038-092X(02)00121-4 |
[27] | 刘大龙,刘加平,杨柳.以晴空指数为主要依据的太阳辐射分区[J].建筑科学,2007,23(6):9-11. |
[ Liu D L, Liu J P, Yang L.Solar radiation distribution based on clearness index[J]. Building Science, 2007,23(6):9-11. ] | |
[28] |
赵天保,艾丽坤,冯锦明. NCEP再分析资料和中国站点观测资料的分析与比较[J].气候与环境研究,2004,9(2):278-294.
doi: 10.3969/j.issn.1006-9585.2004.02.005 |
[ Zhao T B, Ai L K,Feng J M.An intercomparision between NCEP reanalysis data and observed data over China[J]. Climatic and Environmental Research, 2004,9(2):278-294. ]
doi: 10.3969/j.issn.1006-9585.2004.02.005 |
|
[29] | Kaufman L, Rousseeuw P J.Divisive Analysis (Program DIANA)[M]// Finding Groups in Data: An Introduction to Cluster Analysis. John Wiley & Sons, Inc. 2008:253-279. |
[30] |
Wang J F, Li X H, Chrisakos G, et al.Geographical detectors-based health risk assessment and its application in the neural tube defects study of the Heshun region, China[J]. International Journal of Geographical Information Science, 2010,24(1):107-27.
doi: 10.1080/13658810802443457 |
[31] |
刘彦随,杨忍.中国县域城镇化的空间特征与形成机理[J].地理学报,2012,67(8):1011-1020.
doi: 10.11821/xb201208001 |
[ Liu Y S, Yang R.The spatial characteristics and formation mechanism of the county urbanization in China[J]. Acta Geographica Sinica, 2012,67(8):1011-1020. ]
doi: 10.11821/xb201208001 |
[1] | 高楹, 宋辞, 郭思慧, 裴韬. 接驳地铁站的共享单车源汇时空特征及其影响因素[J]. 地球信息科学学报, 2021, 23(1): 155-170. |
[2] | 朱伶俐, 任红艳, 丁凤, 鲁亮, 吴思佳, 崔成. 陕西省HFRS疫情时空分异特征及影响要素研究[J]. 地球信息科学学报, 2020, 22(5): 1142-1152. |
[3] | 赵丹丹, 金声甜, 鲍丙飞, 张利国. 基于地理探测器的中国中部城市土地绿色利用效率时空演变及影响因素研究[J]. 地球信息科学学报, 2020, 22(12): 2358-2370. |
[4] | 宋海慧, 余卓渊, 丁晓彤, 谢云鹏, 吕可晶. 森林脑炎时空分布特征和环境影响因素分析[J]. 地球信息科学学报, 2020, 22(12): 2371-2382. |
[5] | 阎世杰, 王欢, 焦珂伟. 京津冀地区植被时空动态及定量归因[J]. 地球信息科学学报, 2019, 21(5): 767-780. |
[6] | 张湘雪, 王丽, 尹礼唱, 徐成东, 李霞, 刘杨. 京津唐地区HFMD时空变异分析与影响因子探测[J]. 地球信息科学学报, 2019, 21(3): 398-406. |
[7] | 李想, 肖桂荣, 蔡圣准. 结合网络文本的模糊层次分析法评价水环境敏感性[J]. 地球信息科学学报, 2019, 21(12): 1832-1844. |
[8] | 韩燕, 张苑. 甘肃省县域经济差异时空分异及影响因子研究[J]. 地球信息科学学报, 2019, 21(11): 1735-1744. |
[9] | 牛丽楠, 邵全琴, 刘国波, 唐玉芝. 六盘水市土壤侵蚀时空特征及影响因素分析[J]. 地球信息科学学报, 2019, 21(11): 1755-1767. |
[10] | 尹上岗, 李在军, 宋伟轩, 马志飞. 基于地理探测器的南京市住宅租金空间分异格局及驱动因素研究[J]. 地球信息科学学报, 2018, 20(8): 1139-1149. |
[11] | 王钰, 胡宝清. 西江流域生态脆弱性时空分异及其驱动机制研究[J]. 地球信息科学学报, 2018, 20(7): 947-956. |
[12] | 熊俊楠, 赵云亮, 程维明, 郭良, 王楠, 李伟. 四川省山洪灾害时空分布规律及其影响因素研究[J]. 地球信息科学学报, 2018, 20(10): 1443-1456. |
[13] | 彭超, 廖一兰, 张宁旭. 中国城市群臭氧污染时空分布研究[J]. 地球信息科学学报, 2018, 20(1): 57-67. |
[14] | 杨丰硕, 杨晓梅, 王志华, 齐文娟, 李治, 孟樊. 江西省典型县域经济差异影响因子地理探测研究[J]. 地球信息科学学报, 2018, 20(1): 79-88. |
[15] | 杨晶, 胡茂桂, 钟少颖, 方圆. 全国γ辐射剂量率空间分布差异影响机理研究[J]. 地球信息科学学报, 2017, 19(5): 625-634. |
|