地球信息科学学报 ›› 2018, Vol. 20 ›› Issue (4): 523-531.doi: 10.12082/dqxxkx.2018.170536
陈丽娜1,2(), 吴升1,2, 陈洁3,*(
), 李明晓3,4, 陆锋3
收稿日期:
2017-11-27
修回日期:
2018-02-28
出版日期:
2018-04-20
发布日期:
2018-04-20
作者简介:
作者简介:陈丽娜(1993-),女,福建泉州人,硕士生,研究方向为地理信息服务。E-mail:
基金资助:
CHEN Lina1,2(), WU Sheng1,2, CHEN Jie3,*(
), LI Mingxiao3,4, LU Feng3
Received:
2017-11-27
Revised:
2018-02-28
Online:
2018-04-20
Published:
2018-04-20
Contact:
CHEN Jie
Supported by:
摘要:
精细时空尺度下城市人口分布的近实时预测可为优化公共资源配置、协助城市交通诱导、制定公共安全应急预案、探索城市居民活动规律等提供重要科学依据。本文采用城市手机定位数据,基于时间序列分析方法,分别建立参数预测模型和非参数预测模型,对精细尺度下的城市人口空间分布开展近实时预测。预测结果表明,基于时间序列分析方法的预测模型可为精细尺度下的城市人口分布近实时预测提供方法支持;在本文实验条件下,从人口规模、时空分布、多时间尺度、特殊事件等多个角度评估模型精度,非参数预测模型其预测误差均小于参数预测模型,且预测结果更为稳定。
陈丽娜, 吴升, 陈洁, 李明晓, 陆锋. 基于手机定位数据的城市人口分布近实时预测[J]. 地球信息科学学报, 2018, 20(4): 523-531.DOI:10.12082/dqxxkx.2018.170536
CHEN Lina,WU Sheng,CHEN Jie,LI Mingxiao,LU Feng. The Near-real-time Prediction of Urban Population Distributions Based on Mobile Phone Location Data[J]. Journal of Geo-information Science, 2018, 20(4): 523-531.DOI:10.12082/dqxxkx.2018.170536
[1] | 曹劲舟,涂伟,李清泉,等.基于大规模手机定位数据的群体活动时空特征分析[J].地球信息科学学报,2017,19(4):467-474. |
[ Cao J Z, Tu W, Li Q Q, et al.Spatio-temporal analysis of aggregated human activities based on massive mobilep hone tracking data[J]. Journal of Geo-information Science, 2017,19(4):467-474.] | |
[2] |
Kenneth C.Land. Methods for national population forecasts: A review[J]. Journal of the American Statistical Association, 1986,81(396):888-901.
doi: 10.1080/01621459.1986.10478347 |
[3] | Lutz, Wolfgang.The Future population of the world[M]. Earthsan Publications, 1994. |
[4] |
黄荣清. 关于人口预测问题的思考[J].人口研究,2004,28(1):88-90.
doi: 10.3969/j.issn.1000-6087.2004.01.019 |
[ Huang R Q.The thinking of population projection[J]. Population Research, 2004,28(1):88-90. ]
doi: 10.3969/j.issn.1000-6087.2004.01.019 |
|
[5] | Carmichael G A.Population pProjections[M]// Fundamentals of Demographic Analysis: Concepts, Measures and Methods. Springer International Publishing, 2016. |
[6] |
Yang Y, Tian L, Yeh A G O, et al. Zooming into individuals to understand the collective: A review of trajectory-based travel behaviour studies[J]. Travel Behaviour & Society, 2014,1(2):69-78.
doi: 10.1016/j.tbs.2013.12.002 |
[7] |
Zheng V W, Zheng Y, Xie X, et al. Towards mobile intelligence: Learning from GPS history data for collaborative recommendation[J]. Artificial Intelligence, 2012,184-185(2):17-37.
doi: 10.1016/j.artint.2012.02.002 |
[8] |
刘瑜,康朝贵,王法辉.大数据驱动的人类移动模式和模型研究[J].武汉大学学报·信息科学版,2014,39(6):660-666.
doi: 10.13203/j.whugis20140149 |
[ Liu Y, Kang C G, Wang F H.Towards big data-driven human mobility patterns and models[J]. Geomatics and Information Science of Wuhan University, 2014,39(6):660-666. ]
doi: 10.13203/j.whugis20140149 |
|
[9] |
李婷,裴韬,袁烨城,等.人类活动轨迹的分类、模式和应用研究综述[J].地理科学进展,2014,33(7):938-948.
doi: 10.11820/dlkxjz.2014.07.009 |
[ Li T, Pei T, Yuan Y C, et al.A review on the classification, patterns and applied research of human mobility trajectory[J]. Progress in Geography, 2014,33(7):938-948. ]
doi: 10.11820/dlkxjz.2014.07.009 |
|
[10] |
陆锋,刘康,陈洁.大数据时代的人类移动性研究[J].地球信息科学学报,2014,16(5):665-672.
doi: 10.3724/SP.J.1047.2014.00665 |
[ Lu F, Liu K, Chen J.Research on human mobility in big data era[J]. Journal of Geo-information Science, 2014,16(5):665-672. ]
doi: 10.3724/SP.J.1047.2014.00665 |
|
[11] |
龙瀛,张宇,崔承印.利用公交刷卡数据分析北京职住关系和通勤出行[J].地理学报,2012,67(10):1339-1352.
doi: 10.11821/xb201210005 |
[ Long Y, Zhang Y, Cui C Y.Identifying commuting pattern of Beijing using bus smart card data[J]. Acta Geographica Sinica, 2012,67(10):1339-1352. ]
doi: 10.11821/xb201210005 |
|
[12] |
申悦,柴彦威.基于GPS数据的北京市郊区巨型社区居民日常活动空间[J].地理学报,2013,68(4):506-516.
doi: 10.3969/j.issn.0375-5444.2013.04.006 |
[ Shen Y, Chai Y W.Daily activity space of suburban mega- community residents in Beijing based on GPS data[J]. Acta Geographica Sinica, 2013,68(4):506-516. ]
doi: 10.3969/j.issn.0375-5444.2013.04.006 |
|
[13] |
杨喜平,方志祥,赵志远,等.城市人群聚集消散时空模式探索分析——以深圳市为例[J].地球信息科学学报,2016,18(4):486-492.
doi: 10.3724/SP.J.1047.2016.00486 |
[ Yang X P, Fang Z X, Zhao Z Y, et al.Exploring urban human spatio-temporal convergence-dispersion patterns: A case study of Shenzhen city[J]. Journal of Geo-information Science, 2016,18(4):486-492. ]
doi: 10.3724/SP.J.1047.2016.00486 |
|
[14] |
Ahas R, Aasa A, Yuan Y, et al.Everyday space-time geographies: Using mobile phone-based sensor data to monitor urban activity in Harbin, Paris, and Tallinn[J]. International Journal of Geographical Information Science, 2015,29(11):2017-2039.
doi: 10.1080/13658816.2015.1063151 |
[15] | 尹凌,姜仁荣,赵志远,等.利用手机通话位置数据估计城市24h人口分布误差[J].地球信息科学学报,2017,19(6):763-771. |
[ Yin L, Jiang R R, Zhao Z Y, et al.Exploring the bias of estimating 24-hour population distributions using call detail record[J]. Journal of Geo-information Science, 2017,19(6):763-771. ] | |
[16] |
杨喜平,方志祥,赵志远,等.顾及手机基站分布的核密度估计城市人群时空停留分布[J].武汉大学学报·信息科学版,2017,42(1):49-55.
doi: 10.13203/j.whugis20150646 |
[ Yang X P, Fang Z X, Zhao Z Y, et al.Analyzing space-time variation of urban human stay using kernel density estimation by considering space distribution of mobile phone towers[J]. Geomatics and Information Science of Wuhan University, 2017,42(1):49-55. ]
doi: 10.13203/j.whugis20150646 |
|
[17] |
Kang C G, Liu Y, Ma X J, et al.Towards estimating urban population distributions from mobile call data[J]. Journal of Urban Technology, 2012,19(4):3-21.
doi: 10.1080/10630732.2012.715479 |
[18] |
Deville P, Linard C, Martin S, et al.Dynamic population mapping using mobile phone data[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014,111(45):15888.
doi: 10.1073/pnas.1408439111 |
[19] |
钟炜菁,王德,谢栋灿,等.上海市人口分布与空间活动的动态特征研究—基于手机信令数据的探索[J].地理研究,2017,36(5):972-984.
doi: 10.11821/dlyj201705013 |
[ Zhong W J, Wang D, Xie D C, et al.Dynamic characteristics of Shanghai's population distribution using cell phone signaling data[J]. Geographical Research, 2017,36(5):972-984. ]
doi: 10.11821/dlyj201705013 |
|
[20] | 李明晓,陈洁,张恒才,等.上海市精细时空尺度人口分布估计与特征分析[J].地球信息科学学报,2017,19(6):800-807. |
[ Li M X, Chen J, Zhang H C, et al.Fine-grained population estimation and distribution characteristics in Shanghai[J]. Journal of Geo-Information Science, 2017,19(6):800-807. ] | |
[21] |
Guo Q L, Karimi H A.A novel methodology for prediction of spatial-temporal activities using latent features[J]. Computers Environment & Urban Systems, 2017,62:74-85.
doi: 10.1016/j.compenvurbsys.2016.10.006 |
[22] | Zhang J, Zheng Y, Qi D, et al.DNN-based prediction model for spatio-temporal data[C]// ACM Sigspatial International Conference on Advances in Geographic Information Systems. ACM, 2016:92. |
[23] |
Gang X L, Zhao h. Prediction of urban human mobility using large-scale taxi traces and its applications[J]. Frontiers of Computer Science, 2012,6(1):111-121.
doi: 10.1007/s11704-011-1192-6 |
[24] |
Smith B L, Demetsky M J.Traffic flow forecasting: Comparison of modeling approaches[J]. Journal of Transportation Engineering, 1997,123(4):261-266.
doi: 10.1061/(ASCE)0733-947X(1997)123:4(261) |
[25] |
Smith B L, Williams B M, Oswald R K.Comparison of parametric and nonparametric models for traffic flow forecasting[J]. Transportation Research Part C Emerging Technologies, 2002,10(4):303-321.
doi: 10.1016/S0968-090X(02)00009-8 |
[26] | 上海市统计局. 2016年上海市国民经济和社会发展统计公报[J].统计科学与实践,2017(3):12-21. |
[ Shanghai Statistics Bureau. Statistical communique of Shanghai on national economic and social development in 2016[J]. Statistical Theory and Practice, 2017(3):12-21. ] |
[1] | 史雨飞, 陶海燕, 卓莉. 基于零膨胀贝叶斯时空建模的精细尺度伪基站垃圾短信分析方法[J]. 地球信息科学学报, 2022, 24(11): 2089-2101. |
[2] | 张雪霞, 吴升, 赵志远, 王鹏洲, 陈佐旗, 方志祥. 基于手机信令数据的城市小活动空间人群空间分布特征[J]. 地球信息科学学报, 2021, 23(8): 1433-1445. |
[3] | 方志祥, 倪雅倩, 黄守倩. 顾及上网行为特征的手机用户停留行为预测方法[J]. 地球信息科学学报, 2020, 22(1): 136-144. |
[4] | 朱菁玮, 方志祥, 杨喜平, 尹凌. 城市邻近基站间人群流动时空变化同步性分析[J]. 地球信息科学学报, 2018, 20(6): 844-853. |
[5] | 周艳, 李妍羲, 黄悦莹, 耿二辉. 基于社交媒体数据的城市人群分类与活动特征分析[J]. 地球信息科学学报, 2017, 19(9): 1238-1244. |
[6] | 尹凌, 姜仁荣, 赵志远, 宋晓晴, 李晓明. 利用手机通话位置数据估计城市24 h人口分布误差[J]. 地球信息科学学报, 2017, 19(6): 763-771. |
[7] | 方志祥, 倪雅倩, 张韬, 冯明翔, 于冲. 利用终端位置时空转移概率预测通讯基站服务用户规模[J]. 地球信息科学学报, 2017, 19(6): 772-781. |
[8] | 李明晓, 陈洁, 张恒才, 仇培元, 刘康, 陆锋. 上海市精细时空尺度人口分布估计与特征分析[J]. 地球信息科学学报, 2017, 19(6): 800-807. |
[9] | 徐金垒, 方志祥, 萧世伦, 尹淩. 城市海量手机用户停留时空分异分析——以深圳市为例[J]. 地球信息科学学报, 2015, 17(2): 197-205. |
[10] | 李淑娟, 王黎明, 董南. 城市建筑物人口时空分布模型与实验分析——以北京东华门街道为例[J]. 地球信息科学学报, 2013, 15(1): 19-28. |
[11] | 米红. 青岛人口信息系统的应用分析[J]. 地球信息科学学报, 2003, 5(1): 28-33. |
|