地球信息科学学报 ›› 2018, Vol. 20 ›› Issue (4): 440-451.doi: 10.12082/dqxxkx.2018.170579
所属专题: 气候变化与地表过程
黄俊松1(), 曾琪明1,*(
), 高胜1,2, 焦健1, 胡乐银3
收稿日期:
2017-12-04
修回日期:
2018-02-05
出版日期:
2018-04-20
发布日期:
2018-04-20
作者简介:
作者简介:黄俊松(1990-),男,博士生,研究方向为InSAR时序分析。E-mail:
基金资助:
HUANG Junsong1(), ZENG Qiming1,*(
), GAO Sheng1,2, JIAO Jian1, HU Leyin3
Received:
2017-12-04
Revised:
2018-02-05
Online:
2018-04-20
Published:
2018-04-20
Contact:
ZENG Qiming
Supported by:
摘要:
由于自然地表像元在长期观测中容易发生时空失相干,利用时序InSAR(Synthetic Aperture Radar Interferometry)技术对其开展形变监测会面临可用形变测量点不足的挑战。针对这一问题,提出一种改进的小基线(Small Baseline Subset,SBAS)方法。该方法改进了传统SBAS中初始高相干像元筛选及相位滤波过程:首先利用拟合优度检验,并结合相干性阈值条件来识别同质像元;然后根据同质像元数量将所有像元分成2部分,即PS(Persistent Scatterers)候选点和DS(Distributed Scatterers)候选点;其次分别在这两部分像元中开展初始高相干PS点及DS点筛选;最后对选出的高相干PS点及DS点进行加权相位滤波。利用覆盖北京平原区西北部(含城区及山区)的27景ENVISAT ASAR影像开展的形变监测实验表明:与2个参考方法相比,该方法能够有效扩展形变结果上的测量点数量和覆盖范围,测量点数量分别提高了22.6%及27.6%,且自然地表的形变测量点密度得到了明显提升。同时,研究区形变结果与4个连续GPS站的位移数据有很好的一致性,证明了该方法在地表形变反演中的有效性及优越性。
黄俊松, 曾琪明, 高胜, 焦健, 胡乐银. 适用于自然地表形变反演的小基线集方法[J]. 地球信息科学学报, 2018, 20(4): 440-451.DOI:10.12082/dqxxkx.2018.170579
HUANG Junsong,ZENG Qiming,GAO Sheng,JIAO Jian,HU Leyin. An Improved Small Baseline Subset Method for Deformation Retrieval of Natural Terrains[J]. Journal of Geo-information Science, 2018, 20(4): 440-451.DOI:10.12082/dqxxkx.2018.170579
表1
StaMPS-PS中干涉配对信息
序号 | 获取时间 | 垂直基线 B⊥/m | 序号 | 获取时间 | 垂直基线B⊥/m |
---|---|---|---|---|---|
1 | 2007-01-22 | 586 | 15 | 2009-05-11 | -165 |
2 | 2007-02-26 | -46 | 16 | 2009-08-24 | 0 |
3 | 2007-05-07 | -195 | 17 | 2009-09-28 | 556 |
4 | 2007-06-11 | -237 | 18 | 2009-11-02 | -205 |
5 | 2007-07-16 | -107 | 19 | 2010-01-11 | -252 |
6 | 2007-12-03 | 263 | 20 | 2010-02-15 | 423 |
7 | 2008-01-07 | -524 | 21 | 2010-05-22 | 61 |
8 | 2008-02-11 | 274 | 22 | 2010-04-26 | 216 |
9 | 2008-03-17 | -235 | 23 | 2010-05-31 | -96 |
10 | 2008-01-30 | -67 | 24 | 2010-07-05 | 85 |
11 | 2008-08-04 | 15 | 25 | 2010-08-09 | -370 |
12 | 2008-09-08 | 239 | 26 | 2010-09-13 | 80 |
13 | 2008-10-13 | -200 | 27 | 2010-10-18 | 329 |
14 | 2009-04-06 | 462 | - | - | - |
表4
不同相干性情况下3个方法测量点数量及密度对比
形变测量 点总数 | 时序平均相干性低于0.11的像元 | 时序平均相干性低于0.20的像元 | 时序平均相干性低于0.30的像元 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
占比/% | 平均相干性 | 密度/ (个/km2) | 占比/% | 平均相干性 | 密度/ (个/km2) | 占比/% | 平均相干性 | 密度/ (个/km2) | ||||
StaMPS-PS | 93 646 | 0.29 | 0.10 | 0.24 | 5.00 | 0.16 | 2.23 | 24.95 | 0.24 | 9.18 | ||
StaMPS-SBAS | 89 967 | 2.95 | 0.10 | 2.29 | 18.03 | 0.15 | 7.73 | 45.02 | 0.21 | 16.58 | ||
本方法 | 114 765 | 3.64 | 0.10 | 3.61 | 27.10 | 0.15 | 14.81 | 53.71 | 0.20 | 25.22 |
[1] |
Hanssen R F. Radar interferometry data interpretation and error analysis[J]. Journal of the Graduate School of the Chinese Academy of Sciences, 2001,2(1):V5-577-V5-580.
doi: 10.1007/0-306-47633-9 |
[2] |
Hooper A, Zebker H, Segall P, et al.A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers[J]. Geophysical Research Letters, 2004,31(23):1-5.
doi: 10.1029/2004GL021737 |
[3] |
高胜,曾琪明,焦健,等.永久散射体雷达干涉研究综述[J].遥感技术与应用,2016,31(1):86-94.
doi: 10.11873/j.issn.1004-0323.2016.1.0086 |
[ Gao S, Zeng Q, Jiao J, et al.A review on persistent scatterer interferometric synthetic aperture radar[J]. Remote Sensing Technology & Application, 2016,31(1):86-94. ]
doi: 10.11873/j.issn.1004-0323.2016.1.0086 |
|
[4] | Berardino P, Fornaro G, Lanari R, et al.A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002,40(11):2375-2383. |
[5] |
Schmidt D, Bürgmann R. Time-dependent land uplift and subsidence in the Santa Clara Valley, California[J]. Journal of Geophysical Research Solid Earth, 2003,108(B9): ETG 4-1.
doi: 10.1029/2002JB002267 |
[6] |
Gong W, Thiele A, Hinz S, et al.Comparison of small baseline interferometric SAR processors for estimating ground deformation[J]. Remote Sensing, 2016,8(4):330.
doi: 10.3390/rs8040330 |
[7] |
Hooper A.A multi-temporal InSAR method incorporating both persistent scatterer and small baseline approaches[J]. Geophysical Research Letters, 2008,35(16):96-106.
doi: 10.1029/2008GL034654 |
[8] |
Lanari R, Mora O, Manunta M, et al.A small-baseline approach for investigating deformations on full-resolution differential SAR interferograms[J]. Geoscience & Remote Sensing IEEE Transactions on, 2004,42(7):1377-1386.
doi: 10.1109/TGRS.2004.828196 |
[9] |
范锐彦,焦健,高胜,等. InSAR时序分析高相干目标选取方法比较研究[J].地球信息科学学报,2016,18(6):805-814.
doi: 10.3724/SP.J.1047.2016.00805 |
[ Fan R Y, Jiao J, Gao S, et al.2016. Comparison research of high coherent target selection based on InSAR time series analysis[J]. Journal of Geo-information Science, 2016,18(6):805-814. ]
doi: 10.3724/SP.J.1047.2016.00805 |
|
[10] | Mora O, Mallorqui J J, Broquetas A.Linear and nonlinear terrain deformation maps from a reduced set of interferometric SAR images[J]. IEEE Transactions on Geoscience & Remote Sensing, 2003,41(10):2243-2253. |
[11] | 陈强,刘国祥,李永树,等.干涉雷达永久散射体自动探测--算法与实验结果[J].测绘学报,2006,35(2):112-117. |
[Chen Q, Liu G X, Li Y S, et al.Automated detection of permanent scatterers in radar interferometry: Algorithm and testing results[J]. Acta Geodaetica Et Cartographica Sinica, 2015,35(2):112-117. ] | |
[12] |
曲世勃,王彦平,洪文. PSDInSAR的永久散射体时序选择方法[J].电子与信息学报,2011,33(2):381-387.
doi: 10.3724/SP.J.1146.2010.00185 |
[ Qu S B, Wang Y P, Hong W.The PS selection method using temporal information in PSDInSAR technique[J]. Dianzi Yu Xinxi Xuebao/Journal of Electronics & Information Technology, 2011,33(2):381-387. ]
doi: 10.3724/SP.J.1146.2010.00185 |
|
[13] | Hooper A, Spaans K, Bekaert D, et al.StaMPS/MTI manual[J]. Delft institute of earth observation and space systems delft university of technology, Kluyverweg, 2010,1:2629. |
[14] | Wegmǜller U.GAMMA IPTA Processing Example Luxemburg, GAMMA Technical Report[R]. Luxeburg: GAMMA, 2005. |
[15] | 丁伟. PSInSAR点目标提取及相位解缠技术研究[D].长沙:中南大学,2011. |
[ Ding W.Study of PSInSAR on the technique of points selection and phase unwrapping[D]. Changsha: Central South University, 2011. ] | |
[16] | Ferretti A, Fumagalli A, Novali F, et al.A new algorithm for processing interferometric data-stacks: SqueeSAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011,49(9):3460-3470. |
[17 Kvam P H, Vidakovic B. Nonparametric statistics with applications to science and engineering[M]. Hoboken, New Jersey: John Wiley & Sons, Inc., 2007. | |
[18] |
Ferretti A, Prati C, Rocca F.Permanent scatterers in SAR interferometry[J]. IEEE Transactions on geoscience and remote sensing, 2001,39(1):8-20.
doi: 10.1109/36.898661 |
[19] |
罗小军,黄丁发,刘国祥.时序差分雷达干涉中永久散射体的自动探测[J].西南交通大学学报,2007,42(4):414-418.
doi: 10.3969/j.issn.0258-2724.2007.04.006 |
[ Luo X, Huang D, Liu G.Automated detection of permanent scatterers in time serial differential radar interferometry[J]. Journal of Southwest Jiaotong University, 2007,42(4):414-418. ]
doi: 10.3969/j.issn.0258-2724.2007.04.006 |
|
[20] | Xia Y.Homogeneous pixel selection for distributed scatterers using multitemporal SAR data stacks[D]. Technical University of Munich (TUM), 2016. |
[21] |
何庆成,刘文波,李志明.华北平原地面沉降调查与监测[J].高校地质学报,2006,12(2):195-209.
doi: 10.3969/j.issn.1006-7493.2006.02.006 |
[ Qing-Cheng H E, Liu W B, Zhi-Ming L I. Land subsidence survey and monitoring in the North China Plain[J]. Geological Journal of China Universities, 2006,12(2):195-209. ]
doi: 10.3969/j.issn.1006-7493.2006.02.006 |
|
[22] |
Ng A H-M, Ge L, Li X, et al. Monitoring ground deformation in Beijing, China with persistent scatterer SAR interferometry[J]. Journal of Geodesy, 2012,86(6):375-392.
doi: 10.1007/s00190-011-0525-4 |
[23] |
Zebker H A, Villasenor J.Decorrelation in interferometric radar echoes[J]. IEEE Transactions on Geoscience and Remote Sensing, 1992,30(5):950-959.
doi: 10.1109/36.175330 |
[24] | Doin M P, Lodge F, Guillaso S, et al.Presentation of the small baseline NSBAS processing chain on a case example: The ETNA deformation monitoring from 2003 to 2010 using ENVISAT data[C]. FRINGE 2011 ESA Conference, 2011:954-966. |
[25] | Agram P S.Persistent scatterer interferometry in natural terrain[D]. Stanford: Stanford university, 2010. |
[26] |
Zhang Y-Q, Wang S, Wang R.Research on monitoring land subsidence in Beijing plain area using PS-InSAR technology[J]. Spectroscopy and Spectral Analysis, 2014,34(7):1898-1902.
doi: 10.3964/j.issn.1000-0593(2014)07-1898-05 pmid: 25269304 |
[27] |
Luo Y.Primary investigation of formation and genetic mechanism of land subsidence based on PS-InSAR technology in Beijing[J]. Spectroscopy and Spectral Analysis, 2014,34(8):2185-2189.
doi: 10.3964/j.issn.1000-0593(2014)08-2185-05 pmid: 25474959 |
[28] | Wang Y, Liu Y, Hu L.GPS-based research on changes of land subsidence in Beijing from 2007 to 2012[J]. Journal of Catastrophology, 2015,30:11-15. |
[1] | 段艳慧, 赵学胜, 彭舒. 基于信息熵的GlobeLand 30和WorldCover耕地破碎区一致性分析[J]. 地球信息科学学报, 2023, 25(5): 1027-1036. |
[2] | 刘佳, 伍宇明, 高星, 司文涛. 基于GEE和U-net模型的同震滑坡识别方法[J]. 地球信息科学学报, 2022, 24(7): 1275-1285. |
[3] | 王晓蕾, 石守海. 基于GEE的黄河流域植被时空变化及其地形效应研究[J]. 地球信息科学学报, 2022, 24(6): 1087-1098. |
[4] | 于法川, 祝善友, 张桂欣, 朱佳恒, 张南, 徐永明. 复杂山区地形条件下ERA5再分析地表气温降尺度方法[J]. 地球信息科学学报, 2022, 24(4): 750-765. |
[5] | 章敏, 吴文挺, 汪小钦, 孙玉. 基于潮汐动态淹没过程的长江口潮滩地形信息反演研究[J]. 地球信息科学学报, 2022, 24(3): 583-596. |
[6] | 詹琪琪, 赵伟, 杨梦娇, 付浩, 李昕娟, 熊东红. 雅鲁藏布江中部流域土地沙化遥感识别[J]. 地球信息科学学报, 2022, 24(2): 391-404. |
[7] | 代文, 陈凯, 王春, 李敏, 陶宇. 顾及DEM误差空间自相关的地形变化检测方法[J]. 地球信息科学学报, 2022, 24(12): 2297-2308. |
[8] | 段伟芳, 温小乐, 徐涵秋, 邓文慧. 基于光学与雷达影像变化检测的2020年鄱阳湖洪灾评估与分析[J]. 地球信息科学学报, 2022, 24(12): 2435-2447. |
[9] | 李文萍, 王伟, 高星, 伍宇明, 王学成, 刘青. 融合面向对象和分水岭算法的山地湖泊提取方法[J]. 地球信息科学学报, 2021, 23(7): 1272-1285. |
[10] | 李志红, 李旺平, 王玉, 陈璐, 郁林, 周兆叶, 郝君明, 吴晓东, 李传华. 基于离散粒子群算法的2种新型水体提取方法的对比与验证[J]. 地球信息科学学报, 2021, 23(6): 1106-1117. |
[11] | 管琪卉, 丁明军, 张华, 王鹏. ESTARFM算法在长江中下游平原地区的适用性研究[J]. 地球信息科学学报, 2021, 23(6): 1118-1130. |
[12] | 彭妍菲, 李忠勤, 姚晓军, 牟建新, 韩伟孝, 王盼盼. 基于多源遥感数据和GEE平台的博斯腾湖面积变化及影响因素分析[J]. 地球信息科学学报, 2021, 23(6): 1131-1153. |
[13] | 张志恒, 章超, 孟麟, 唐凯, 朱红春. 改进DINEOF算法在中国渤海叶绿素a遥感缺失数据重构中的应用研究[J]. 地球信息科学学报, 2021, 23(4): 737-748. |
[14] | 乔丹玉, 郑进辉, 鲁晗, 邓磊. 面向不同环境背景的Landsat影像水体提取方法适用性研究[J]. 地球信息科学学报, 2021, 23(4): 710-722. |
[15] | 廖嘉欣, 吴启用, 兰小机, 张红庆. 基于WiFi探针数据的城市出行轨迹提取[J]. 地球信息科学学报, 2021, 23(11): 1946-1955. |
|