地球信息科学学报 ›› 2018, Vol. 20 ›› Issue (5): 684-693.doi: 10.12082/dqxxkx.2018.170618
向超1(), 朱翔1,*(
), 胡德勇2, 乔琨3, 陈姗姗2
出版日期:
2018-05-29
发布日期:
2018-05-20
通讯作者:
朱翔
E-mail:xiangchao2008cn@163.com;zhuxiang8820000@aliyun.com
作者简介:
作者简介:向超(1974-),男,博士生,主要从事资源开发与区域可持续发展研究。E-mail:
基金资助:
XIANG Chao1(), ZHU Xiang1,*(
), HU Deyong2, QIAO Kun3, CHEN Shanshan2
Online:
2018-05-29
Published:
2018-05-20
Contact:
ZHU Xiang
E-mail:xiangchao2008cn@163.com;zhuxiang8820000@aliyun.com
Supported by:
摘要:
不透水面是衡量城市化程度的重要指标之一,对京津唐城市群的不透水面进行深入研究,可以量化城市群扩张过程及其影响,对该区域多城市协调发展及规划布局具有重要意义。本文结合高分辨遥感影像、生长季及落叶季的Landsat TM遥感影像和夜间灯光数据等,采用分类和回归树(Classification and rRegression Tree, CART)算法,构建了适于京津唐地区不透水面盖度提取的技术方案,获取了京津唐地区1995-2016年共5期地表不透水面盖度专题信息,并分析了地表不透水面的时空演变规律,结论为:① 适于京津唐地区不透水面盖度提取的CART算法的最佳输入变量组合为:生长季和落叶季的Landsat TM图像以及对应的夜间灯光数据;其次为生长季Landsat TM遥感图像和夜间灯光数据组合方案。利用该组合方案,ISP估算输出结果的交叉验证精度R值可以达到约0.85,可以满足地表不透水面纵向对比分析的需要。② 从地表不透水面总面积数量值来看,1995-2016年京津唐主体城市区域整体上呈增长趋势,其中2011-2016年地表不透水面积增加愈加明显;③ 从地表不透水面盖度值的高低来看,1995-2016年京津唐中、高盖度不透水面的占比都是在不断增长的,低盖度不透水面占比存在少量下降现象,且京、津、唐3城市的主体城区各阶段变化差异较大,反映出了各城市扩张具有各自不同的时空演变特征。
向超, 朱翔, 胡德勇, 乔琨, 陈姗姗. 近20年京津唐地区不透水面变化的遥感监测[J]. 地球信息科学学报, 2018, 20(5): 684-693.DOI:10.12082/dqxxkx.2018.170618
XIANG Chao,ZHU Xiang,HU Deyong,QIAO Kun,CHEN Shanshan. Monitoring of the Impervious Surface with Multi-resource Remote Sensing Images in Beijing-Tianjin-Tangshan Urban Agglomeration in the Past Two Decades[J]. Journal of Geo-information Science, 2018, 20(5): 684-693.DOI:10.12082/dqxxkx.2018.170618
表1
本研究所用数据及其特性"
数据集 | 影像获取日期 | |||||
---|---|---|---|---|---|---|
年份 | 行列号(列/行) | |||||
122/32 | 122/33 | 123/32 | 123/33 | |||
遥感数据 | Landsat 5 TM/ Landsat 7 ETM+(*) | 1995 | 1995-04-02 | 1995-04-18 | 1995-09-16 | 1995-09-16 |
2001 | 2001-09-17 | 2001-09-01 | 2001-05-19(*) | 2001-05-27(*) | ||
2001-08-31 | 2001-08-31 | |||||
2005 | 2005-08-19 | 2005-08-19 | 2005-05-06 | 2005-05-06 | ||
2005-11-14 | 2005-11-14 | |||||
2011 | 2010-04-27 | 2010-04-27 | 2011-06-08 | 2011-06-08 | ||
Landsat 8 OLI | 2015 | 2015-03-24 | 2015-03-24 | 2014-09-04 | 2014-09-04 | |
2016-05-13 | 2016-05-13 | 2015-02-11 | 2015-02-11 | |||
QuickBird | 2005年 | |||||
DMSP/OLS | 1 km空间分辨率的夜间灯光数据(1995-2011年) | |||||
Suomi NPP/VIIRS | 500 m空间分辨率的夜间灯光数据(2016年) | |||||
地形数据 | ASTER GDEM (30 m空间分辨率) | |||||
其他 | 县区级的行政区划数据 |
[1] |
Arnold Jr C L,Gibbons C J. Impervious surface coverage: The emergence of a key environmental indicator[J]. Journal of the American Planning Association, 1996,62(2):243-258.
doi: 10.1080/01944369608975688 |
[2] | Xiao R B, Ouyang Z Y, Cai Y N.Urban landscape pattern study based on sub-pixel estimation of impervious surface[J]. Acta Ecologica Sinica, 2007,27:3189-3197. |
[3] |
Li J, Song C, Cao L, et al.Impacts of landscape structure on surface urban heat islands: A case study of Shanghai, China[J]. Remote Sensing of Environment, 2011,115(12):3249-3263.
doi: 10.1016/j.rse.2011.07.008 |
[4] |
Zhang L, Weng Q.Annual dynamics of impervious surface in the Pearl River Delta, China, from 1988 to 2013, using time series Landsat imagery[J]. Isprs Journal of Photogrammetry & Remote Sensing, 2016,113(3):86-96.
doi: 10.1016/j.isprsjprs.2016.01.003 |
[5] |
Weng Q.Remote sensing of impervious surfaces in the urban areas: Requirements, methods, and trends[J]. Remote Sensing of Environment, 2012,117(2):34-49.
doi: 10.1016/j.rse.2011.02.030 |
[6] |
Yang X.Estimating landscape imperviousness index from satellite imagery[J]. IEEE Geoscience & Remote Sensing Letters, 2006,3(1):6-9.
doi: 10.1109/LGRS.2005.853929 |
[7] |
Jin H, Mountrakis G.Integration of urban growth modelling products with image-based urban change analysis[J]. International Journal of Remote Sensing, 2013,34(15):5468-5486.
doi: 10.1080/01431161.2013.791760 |
[8] |
SanbumL,Lathrop R G. Subpixel Analysis of Landsat ETM/sup+/Using Self-organizing Map(SOM) Neural Networks for Urban Land Cover Characterization[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006,44(6):1642-1654.
doi: 10.1109/TGRS.2006.869984 |
[9] | 曹丽琴,李平湘,张良培,等. Fuzzy ARTMAP算法在城市不透水面估算中的应用研究[J].武汉大学学报·信息科学版,2012,37(10):1236-1239. |
[ Cao L Q, Li P X, Zhang L P, et al.Estimating impervious surfaces using the fuzzy artmap[J]. Geomatics and Information Science of Wuhan University, 2012,37(10):1236-1239. ] | |
[10] |
Patel N, Mukherjee R.Extraction of impervious features from spectral indices using artificial neural network[J]. Arabian Journal of Geosciences, 2014,8(6):3729-3741.
doi: 10.1007/s12517-014-1492-x |
[11] |
Yang L, Huang C, Homer C G, et al.An approach for mapping large-area impervious surfaces: Synergistic use of Landsat 7 ETM+ and high spatial resolution imagery[J]. Canadian Journal of Remote Sensing, 2003,29(2):230-240.
doi: 10.5589/m02-098 |
[12] |
Xian G, Crane M.Assessments of urban growth in the tampa bay watershed using remote sensing data[J]. Remote Sensing of Environment, 2005,97(22):203-215.
doi: 10.1016/j.rse.2005.04.017 |
[13] |
Wu C, Murray A T.Estimating impervious surface distribution by spectral mixture analysis[J]. Remote Sensing of Environment, 2003,84(23):493-505.
doi: 10.1016/S0034-4257(02)00136-0 |
[14] |
周纪,陈云浩,张锦水,等.北京城市不透水层覆盖度遥感估算[J].国土资源遥感,2007,19(3):13-17.
doi: 10.3969/j.issn.1001-070X.2007.03.003 |
[ Zhou J, Chen Y H, Zhang J S, et al.Estimating impervious surfaces using the fuzzy artmap[J]. Remote Sensing for Land and Resources, 2007,19(3):13-17. ]
doi: 10.3969/j.issn.1001-070X.2007.03.003 |
|
[15] |
Hao W, Wu B F, Li X S.Extraction of impervious surface in Hai Basin using remote sensing[J]. Journal of Remote Sensing, 2011,15(2):388-400.
doi: 10.3724/SP.J.1011.2011.00403 |
[16] | Breiman L, Friedman J, Olshen R.Classification and Regression Tree[M]. New York: Chapman and Hall, 1984. |
[17] |
Friedl M A, Brodley C E, Strahler A H.Maximizing land cover classification accuracies produced by decision trees at continental to global scales[J]. IEEE Trans on Geoscience and Remote Sensing, 1999,37(2):969-977.
doi: 10.1109/36.752215 |
[18] |
Lawrence R, Bunn A, Powell S.Classification of remotely sensed imagery using stochastic gradient boosting as a refinement of classification tree analysis[J]. Remote Sensing of Environment, 2004,90(3):331-336.
doi: 10.1016/j.rse.2004.01.007 |
[19] |
Homer C, Dewitz J, Yang L, et al.Completion of the 2011 national land cover database for the conterminous united states representing a decade of land cover change information[J]. Photogrammetric Engineering & Remote Sensing, 2015,81(5):346-354.
doi: 10.1016/S0099-1112(15)30100-2 |
[20] |
Xian G, Homer C.Updating the 2001 national land cover database impervious surface products to 2006 using landsat imagery change detection methods[J]. Remote Sensing of Environment, 2010,114(8):1676-1686.
doi: 10.1016/j.rse.2010.02.018 |
[21] |
Xian G, Homer C, Fry J.Updating the 2001 National Land Cover Database land cover classification to 2006 by using Landsat imagery change detection methods.[J]. Remote Sensing of Environment, 2009,113(6):1133-1147.
doi: 10.1016/j.rse.2009.02.004 |
[22] | 张佳华. 城市热环境遥感[M].北京:气象出版社,2010. |
[ Zhang J H.Urban thermal environment remote sensing[M]. Beijing: China Meteorological Press, 2010. ] | |
[23] |
Huang C,Townshend J R G. A stepwise regression tree for nonlinear approximation: Application to estimating subpixel land cover[J]. International Journal of Remote Sensing, 2003,24(1):75-90.
doi: 10.1080/01431160305001 |
[24] | Liu Y H, Niu Z, Wang C Y.Research and application of the decision tree classification using MODIS data[J]. Journal of Remote Sensing, 2005,9(4):405-411. |
[25] | Liu Y H, Niu Z, Wang C Y.Research and application of the decision tree classification using MODIS data[J]. Journal of Remote Sensing, 2005,9(4):405-411. |
[26] | Lu D, Hetrick S, Moran E, et al.Detection of urban expansion in an urban-rural landscape with multitemporalQuickBird images[J]. Journal of Applied Remote Sensing, 2010,4(1):201-210. |
[27] |
Li X, Gong P, Liang L.A 30-year (1984-2013) record of annual urban dynamics of Beijing City derived from Landsat data[J]. Remote Sensing of Environment, 2015,166(1):78-90.
doi: 10.1016/j.rse.2015.06.007 |
[28] |
Wang J, Li C, Hu L, et al.Seasonal land cover dynamics in beijing derived from Landsat 8 data using a spatio-temporal contextual approach[J]. Remote Sensing, 2015,7(1):865-881.
doi: 10.3390/rs70100865 |
[1] | 叶虎平, 廖小罕, 何贤强, 岳焕印. 斯里兰卡近海海洋生态环境变化遥感监测分析[J]. 地球信息科学学报, 2020, 22(7): 1463-1475. |
[2] | 赵林峰, 刘小平, 刘鹏华, 陈广照, 何家律. 基于地理分区与FLUS模型的城市扩张模拟与预警[J]. 地球信息科学学报, 2020, 22(3): 517-530. |
[3] | 黄慧, 柯新利. 权衡耕地保护与城市扩张的永久基本农田划定——以武汉市为例[J]. 地球信息科学学报, 2020, 22(3): 592-604. |
[4] | 王家丰, 王蓉, 冯永玖, 雷振坤, 高忱, 陈书睿, 金雁敏, 翟淑婷. 顾及轨道交通影响的浙中城市群土地利用多情景模拟与分析[J]. 地球信息科学学报, 2020, 22(3): 605-615. |
[5] | 周玲, 李云梅, 赵焕, 房晟忠, 颜翔, 吕恒. 滇池湖滨带植被时空变化及其对滇池总磷浓度的影响[J]. 地球信息科学学报, 2020, 22(10): 1946-1958. |
[6] | 周日平. 中国荒漠化分区与时空演变[J]. 地球信息科学学报, 2019, 21(5): 675-687. |
[7] | 黄耀欢, 李中华, 朱海涛. 作物胁迫无人机遥感监测研究评述[J]. 地球信息科学学报, 2019, 21(4): 512-523. |
[8] | 陈斌, 王宏志, 徐新良, 陈德超, 武新梅, 付阳阳. 武汉市主城区用地结构遥感监测及动态变化[J]. 地球信息科学学报, 2019, 21(2): 293-303. |
[9] | 周岩, 董金玮. 陆表水体遥感监测研究进展[J]. 地球信息科学学报, 2019, 21(11): 1768-1778. |
[10] | 邓刘洋, 沈占锋, 柯映明. 城市建成区遥感影像边界提取与扩张分析[J]. 地球信息科学学报, 2018, 20(7): 996-1003. |
[11] | 冯素云, 张凯选, 鹿琳琳. “海上丝绸之路”超大城市环境变化遥感分析[J]. 地球信息科学学报, 2018, 20(5): 602-612. |
[12] | 吴欣昕, 刘小平, 梁迅, 陈广亮. FLUS-UGB多情景模拟的珠江三角洲城市增长边界划定[J]. 地球信息科学学报, 2018, 20(4): 532-542. |
[13] | 郑慧祯, 陈燕红, 丁威, 潘文斌, 蔡芫镔. 地表温度扰动特性及其与建设用地扩张的关系[J]. 地球信息科学学报, 2018, 20(10): 1529-1540. |
[14] | 温小乐, 李洋, 林征峰. 海岛建设引发的植被覆盖度变化的遥感分析[J]. 地球信息科学学报, 2017, 19(2): 273-280. |
[15] | 宋明明, 都金康, 郑文龙, 李成蹊, 卞国栋. 秦淮河流域近30年不透水面景观格局时空演变研究[J]. 地球信息科学学报, 2017, 19(2): 238-247. |
|