地球信息科学学报 ›› 2018, Vol. 20 ›› Issue (6): 817-826.doi: 10.12082/dqxxkx.2018.180015
• 2017年中国地理信息科学理论与方法学术年会优秀论文专辑 • 上一篇 下一篇
收稿日期:
2018-01-02
修回日期:
2018-04-04
出版日期:
2018-06-20
发布日期:
2018-06-20
通讯作者:
蒲英霞
E-mail:zxy919781142@163.com;yingxiapu@nju.edu.cn
作者简介:
作者简介:赵心怡(1993-),女,硕士生,研究方向为空间数据挖掘。E-mail:
基金资助:
Received:
2018-01-02
Revised:
2018-04-04
Online:
2018-06-20
Published:
2018-06-20
Contact:
PU Yingxia
E-mail:zxy919781142@163.com;yingxiapu@nju.edu.cn
Supported by:
摘要:
区域人口迁移流的规模不仅取决于迁出地与目的地的“双边”要素,也与前期迁移流和周边迁移流息息相关。传统重力模型揭示了区域人口迁移过程的“推-拉”机制,但受制于对时空维度的忽视,无法有效表达迁移流之间的时空依赖关系,因而难以度量区域要素变化对迁移流产生的时空溢出效应。本文引入多种形式的时空依赖结构,构建迁移流时空重力模型,并采用贝叶斯马尔可夫链蒙特卡洛(MCMC)方法进行估计。在此基础上,结合时空效应框架量化区域要素对迁移流的影响,定量分析人口迁移过程的时空溢出效应与动力机制。本文以1985-2015年中国省际人口迁移为例,通过与非空间的动态重力模型估计结果比较,初步表明时间依赖、空间依赖以及时空扩散依赖在区域人口迁移过程中不容忽视;时空维度上,区域要素变化在初期对迁移网络的溢出效应超过对该区域迁移流的直接影响;逐渐衰减的时空溢出效应维持了区域人口迁移规模发展的相对稳定,与动态重力模型估计结果形成了鲜明对比。区域人口规模、人均GDP水平及其时空溢出效应共同驱动中国省际人口迁移系统的发展。耦合时空维度依赖关系的时空重力模型能更好地理解区域人口迁移过程的演化特征,为促进区域人口均衡发展提供科学的决策依据。
赵心怡, 蒲英霞. 区域人口迁移时空溢出效应与动力机制分析[J]. 地球信息科学学报, 2018, 20(6): 817-826.DOI:10.12082/dqxxkx.2018.180015
ZHAO Xinyi,PU Yingxia. Space-time Spillover Effects and Driving Forces of Regional Migration Process[J]. Journal of Geo-information Science, 2018, 20(6): 817-826.DOI:10.12082/dqxxkx.2018.180015
表1
中国省际迁移动态重力模型和时空重力模型的系数估计结果"
动态重力模型 | 时空重力模型 | ||||
---|---|---|---|---|---|
变量 | 系数 | p值 | 系数 | p值 | |
α | -1.0335 | 0.0918 | -0.6042 | 0.0395 | |
γ | -0.9795 | 0.0000 | -0.2147 | 0.0000 | |
βo_GDP | -0.0665 | 0.0440 | -0.0249 | 0.0786 | |
βo_Popu | 0.8746 | 0.0000 | 0.2222 | 0.0000 | |
βd_GDP | 0.7947 | 0.0000 | 0.1713 | 0.0000 | |
βd_Popu | 0.5094 | 0.0000 | 0.1084 | 0.0000 | |
ρo | - | - | 0.4381 | 0.0000 | |
ρd | - | - | 0.3165 | 0.0000 | |
ρw | - | - | 0.0670 | 0.0000 | |
? | 0.0563 | 0.090 0 | 0.5935 | 0.0000 | |
θo | - | - | -0.2282 | 0.0000 | |
θd | - | - | -0.1301 | 0.0000 | |
θw | - | - | -0.2282 | 0.0000 | |
R2 | 0.6760 | 0.7687 | |||
修正R2 | 0.6757 | 0.7684 | |||
AIC | -37 679 | -39 245 | |||
BIC | -37 641 | -39 207 |
表2
中国省际迁移动态重力模型和时空重力模型的溢出效应估计"
时间T | 动态重力模型 | 时空重力模型 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
人均GDP | 人口数量 | 人均GDP | 人口数量 | ||||||||
均值 | 累积和 | 均值 | 累积和 | 均值 | 累积和 | 均值 | 累积和 | ||||
迁出地效应(oe) | |||||||||||
0(同期) | -0.0665** | -0.0665** | 0.8746*** | 0.8746*** | -0.0214 | -0.0214 | 0.4111*** | 0.4111*** | |||
1 | -0.0060* | -0.0724** | 0.0784*** | 0.9531*** | -0.0288** | -0.0502 | 0.2047*** | 0.6158*** | |||
2 | -0.0006 | -0.0730** | 0.0073** | 0.9604*** | -0.0181** | -0.0683 | 0.1277*** | 0.7436*** | |||
3 | -0.0001 | -0.0730** | 0.0007* | 0.9611*** | -0.0119** | -0.0802 | 0.0835*** | 0.8271*** | |||
4 | -0.0000 | -0.0730** | 0.0001 | 0.9612*** | -0.0080** | -0.0882 | 0.0563*** | 0.8834*** | |||
5 | -0.0000 | -0.0730** | 0.0000 | 0.9612*** | -0.0055** | -0.0936 | 0.0386*** | 0.9219*** | |||
长期 | - | -0.0730** | - | 0.9612*** | - | -0.1067 | - | 1.0142*** | |||
目的地效应(de) | |||||||||||
0(同期) | 0.7947*** | 0.7947*** | 0.5094*** | 0.5094*** | 0.2363*** | 0.2363*** | 0.1776*** | 0.1776*** | |||
1 | 0.0713*** | 0.8661*** | 0.0456*** | 0.5550*** | 0.1068*** | 0.3431*** | 0.0619*** | 0.2394*** | |||
2 | 0.0067** | 0.8727*** | 0.0043** | 0.5593*** | 0.0562*** | 0.3993*** | 0.0319*** | 0.2713*** | |||
3 | 0.0006* | 0.8734*** | 0.0004* | 0.5597*** | 0.0301*** | 0.4293*** | 0.016 5*** | 0.2878*** | |||
4 | 0.0001 | 0.8734*** | 0.000 0 | 0.5597*** | 0.0163*** | 0.4457*** | 0.0087*** | 0.2966*** | |||
5 | 0.0000 | 0.8734*** | 0.0000 | 0.5597*** | 0.0090*** | 0.4546*** | 0.0046*** | 0.3012*** | |||
长期 | - | 0.8734*** | - | 0.5597*** | - | 0.4655*** | - | 0.3055*** | |||
网络效应(ne) | |||||||||||
0(同期) | - | - | - | - | 0.6980*** | 0.6980 | 1.3208*** | 1.3208 | |||
1 | - | - | - | - | -0.0904 | 0.6075 | -0.2313 | 1.0895 | |||
2 | - | - | - | - | -0.0560*** | 0.5516 | -0.1592*** | 0.9303 | |||
3 | - | - | - | - | -0.0350*** | 0.5166 | -0.1101*** | 0.8202 | |||
4 | - | - | - | - | -0.0200*** | 0.4965 | -0.0724*** | 0.7477 | |||
5 | - | - | - | - | -0.0117*** | 0.4848 | -0.0486*** | 0.6991 | |||
长期 | - | - | - | - | - | 0.4662*** | - | 0.5884*** | |||
总体效应(te) | |||||||||||
0(同期) | 0.7283*** | 0.7280*** | 1.3840*** | 1.3840*** | 0.9128*** | 0.9128*** | 1.9095*** | 1.9095 | |||
1 | 0.0654*** | 0.7936*** | 0.1241*** | 1.5081*** | -0.0124 | 0.9005*** | 0.0353 | 1.9448 | |||
2 | 0.0061** | 0.7998*** | 0.0116** | 1.5197*** | -0.0179* | 0.8826*** | 0.0004 | 1.9452 | |||
3 | 0.0006* | 0.8003*** | 0.0011* | 1.5208*** | -0.0169*** | 0.8657*** | -0.0101* | 1.9351 | |||
4 | 0.0000 | 0.8004*** | 0.0001 | 1.5209*** | -0.0117*** | 0.8541*** | -0.0074*** | 1.9277 | |||
5 | 0.0000 | 0.8004*** | 0.0000 | 1.5209*** | -0.0082*** | 0.8458*** | -0.0055*** | 1.9222 | |||
长期 | - | 0.8004*** | - | 1.5209*** | - | 0.8250*** | - | 1.9080*** |
[1] | Bijak J.Forecasting international migration in Europe: A Bayesian view[M]. Berlin: Springer, 2010. |
[2] | White M J.International handbook of migration and population distribution[M]. Berlin: Springer, 2016. |
[3] |
LeSage J P, Pace R K. Spatial econometric modeling of origin-destination flows[J]. Journal of Regional Science, 2008,48(5):941-967.
doi: 10.1111/jors.2008.48.issue-5 |
[4] |
LeSage J P, Thomas-Agnan C. Interpreting Spatial econometric origin-destination flow models[J]. Journal of Regional Science, 2015,55(2):188-208.
doi: 10.1111/jors.12114 |
[5] | Sen A, Smith T E.Gravity models of spatial interaction behavior[M]. Berlin: Springer, 1995. |
[6] |
王亚平,蒲英霞,马劲松,等.基于空间OD模型的中国省际人口迁移机制分析[J].西北师范大学学报(自然科学版),2015,51(3):89-97.
doi: 10.3969/j.issn.1001-988X.2015.03.016 |
[ Wang Y P, Pu Y X, Ma J S, et al.Mechanism analysis of inter-provincial migration flow s in China based on spatial OD models[J]. Journal of Northwest Normal University (Natural Science), 2015,51(3):89-97. ]
doi: 10.3969/j.issn.1001-988X.2015.03.016 |
|
[7] |
Etzo I.The determinants of the recent interregional migration flows in Italy: A panel data analysis[J]. Journal of Regional Science, 2011,51(5):948-966.
doi: 10.1111/j.1467-9787.2011.00730.x |
[8] | Mitze T.On the mutual dynamics of interregional gross migration flows in space and time[C]. In: Patuelli R, Arbia G. Spatial Econometric Interaction Modelling. Switzerland: Springer International Publishing, 2016:415-440. |
[9] |
Rainer H, Siedler T.Social networks in determining migration and labour market outcomes: Evidence from the German Reunification[J]. Econ Transit, 2009,17(4):739-767.
doi: 10.1111/j.1468-0351.2009.00365.x |
[10] |
Chun Y, Griffith D.Modeling network autocorrelation in space-time migration flow data: An eigenvector spatial filtering approach[J]. Annals of the Association of American Geographers, 2011,101(3):523-536.
doi: 10.1080/00045608.2011.561070 |
[11] | Black W R.Network autocorrelation in transport network and flow systems[J]. Geographical Analysis, 1992,24(3):207-222. |
[12] |
Griffith D A, Jones K.Explorations into the relationships between spatial structure and spatial interaction[J]. Environment and Planning A, 1980,12:187-201.
doi: 10.1068/a120187 |
[13] | 蒲英霞,韩洪凌,葛莹,等.中国省际人口迁移的多边效应机制分析[J].地理学报,2016,71(2):205-216. |
[ Pu Y X, Han H L, Ge Y, et al.Multilateral mechanism analysis of interprovincial migration flows in China[J]. Acta Geographica Sinica, 2016,71(2): 205-216. ] | |
[14] |
Fan C C.Modeling interprovincial migration in China, 1985-2000. Eurasian Geography & Economics, 2005,46(3):165-184.
doi: 10.2747/1538-7216.46.3.165 |
[15] | 王桂新,潘泽瀚.中国人口迁移分布的顽健性与胡焕庸线[J].中国人口科学,2016(1):2-13. |
[ Wang G X, Pan Z H.Into digitization: Some concepts and methods of Chinese historical geographic information system[J]. Historical Geography, 2002(1):2-13. ] | |
[16] | Elhorst J P.Spatial econometrics: From cross-sectional data to spatial panels[M]. Berlin: Springer, 2014. |
[17] |
Chun Y.Modeling network autocorrelation within migration flows by eigenvector spatial filtering[J]. Journal of Geographical Systems, 2008,10(4):317-344.
doi: 10.1007/s10109-008-0068-2 |
[18] |
LeSage J P, Llano C. A Spatial interaction model with spatial structure origin and destination effects[J]. Journal of Regional Science, 2013,15(3):265-289.
doi: 10.1007/s10109-013-0181-8 |
[19] |
Bhargava A, Sargan J D.Estimating dynamic random effects models from panel data covering short time periods[J]. Econometrica, 1983,51:1635-1659.
doi: 10.2307/1912110 |
[20] |
Parent O, LeSage J P. A space-time filter for panel data models containing random effects[J]. Computational Statistics & Data Analysis, 2011,55(1):475-490.
doi: 10.1016/j.csda.2010.05.016 |
[21] |
Griffith D A, Fischer M M, LeSage J P. The spatial autocorrelation problem in spatial interaction modeling: A comparison of two common solutions[J]. Letters in Spatial & Resource Sciences, 2017,10:75-86.
doi: 10.1007/s12076-016-0172-8 |
[22] | Parent O, LeSage J P. Spatial dynamic panel data models with random effects[J]. Regional Science & Urban Economics, 2012,42(4):727-738. |
[23] | Chib S, Carlin B P.On MCMC sampling in hierarchical longitudinal models[J]. Kluwer Academic Publishers, 1999,9(1):17-26. |
[24] | Elhorst J P.Spatial panel data models[C]. In: Fischer MM. Handbook of applied spatial analysis. Berlin: Springer, 2010:377-407. |
[25] | LeSage J P, Pace R K. Introduction to spatial econometrics[M]. Boca Raton: CRC press, 2009. |
[26] |
LeSage J P. Spatial econometric panel data model specification: A Bayesian approach[J]. Spatial Statistics, 2014,9:122-145.
doi: 10.2139/ssrn.2339124 |
[27] |
Golgher A B, Voss P R.How to interpret the coefficients of spatial models: Spillovers, direct and indirect effects[J]. Spatial Demography, 2016,4:175-205.
doi: 10.1007/s40980-015-0016-y |
[28] |
Debarsy N, Ertur C, LeSage J P. Interpreting dynamic space-time panel data models[J]. Statistical Methodology, 2012,9:158-171.
doi: 10.1016/j.stamet.2011.02.002 |
[29] |
Parent O, LeSage J P. A spatial dynamic panel model with random effects applied to commuting times[J]. Transportation Research Part B, 2010,44:633-645.
doi: 10.1016/j.trb.2010.01.004 |
[30] | 国务院人口普查办公室,国家统计局人口和就业统计司.中国1990年人口普查资料[M].北京:中国统计出版社,1993. |
[ Population Census Office under the State Council, Department of Population and Employment Statistics under the National Bureau of Statistics (NBS). Tabulation on the 1990 Population Census of the People's Republic of China[M]. Beijing: China Statistics Press, 1993. ] | |
[31] | 国务院人口普查办公室,国家统计局人口和就业统计司.中国2010年人口普查资料[M].北京:中国统计出版社,2012. |
[ Population Census Office under the State Council, Department of Population and Employment Statistics under the National Bureau of Statistics (NBS). Tabulation on the 2010 Population Census of the People's Republic of China[M]. Beijing: China Statistics Press, 2012. ] | |
[32] | 国务院人口普查办公室,国家统计局人口和就业统计司.中国2010年人口普查资料[M].北京:中国统计出版社,2012. |
[ Population Census Office under the State Council, Department of Population and Employment Statistics under the National Bureau of Statistics (NBS). Tabulation on the 2010 Population Census of the People's Republic of China[M]. Beijing: China Statistics Press, 2012. ] | |
[33] | 国务院人口普查办公室,国家统计局人口和就业统计司.1995年全国1%人口抽样调查资料[M].北京:中国统计出版社,1997. |
[ Population Census Office under the State Council, Department of Population and Employment Statistics under the National Bureau of Statistics (NBS). Tabulation on the 1995 1% Population Sampling Survey of the People's Republic of China[M]. Beijing: China Statistics Press, 1997. ] | |
[34] | 国务院人口普查办公室,国家统计局人口和就业统计司. 2005年全国1%人口抽样调查资料[M].北京:中国统计出版社,2007. |
[ Population Census Office under the State Council, Department of Population and Employment Statistics under the National Bureau of Statistics (NBS). Tabulation on the 2005 1% Population Sampling Survey of the People's Republic of China[M]. Beijing: China Statistics Press, 2007. ] | |
[35] | 国务院人口普查办公室,国家统计局人口和就业统计司.2015年全国1%人口抽样调查资料[M].北京:中国统计出版社,2016. |
[ Population Census Office under the State Council, Department of Population and Employment Statistics under the National Bureau of Statistics (NBS). Tabulation on the 2015 1% Population Sampling Survey of the People's Republic of China[M]. Beijing: China Statistics Press, 2016. ] | |
[36] | 刘生龙. 中国跨省人口迁移的影响因素分析[J].数量经济技术经济研究,2014,31(4):83-98. |
[ Liu S L.Factors analysis on interprovincial migration in China[J]. The Journal of Quantitative & Technical Economics, 2014,31(4): 83-98. ] | |
[37] | 刘晏伶,冯健.中国人口迁移特征及其影响因素——基于第六次人口普查数据的分析[J].人文地理,2014,29(2):129-137. |
[ Liu Y L, Feng J.Characteristics and impact factors of migration in China: Based on the analysis of the sixth census data[J]. Human Geography, 2014,29(2):129-137. ] | |
[38] | 王桂新,潘泽瀚,陆燕秋.中国省际人口迁移区域模式变化及其影响因素水-基于2000和2010年人口普查资料的分析[J].中国人口科学,2012(5):2-13. |
[ Wang G X, Pan Z H, Lu Y Q. China's inter-provincial migration patterns and influential factors: Evidence from year 2000 and 2010 population census of China[J]. Chinese Journal of Population Science, 2012(5):2-13. ] | |
[39] | 国家统计局.中国统计年鉴(1988)[M].北京:中国统计出版社,1988. |
[ National Bureau of Statistics (NBS). China statistical yearbook (1988)[M]. Beijing: China Statistics Press, 1988. ] | |
[40] | 国家统计局.中国统计年鉴(1993)[M].北京:中国统计出版社,1993. |
[ National Bureau of Statistics (NBS). China statistical yearbook (1993)[M]. Beijing: China Statistics Press, 1993. ] | |
[41] | 国家统计局.中国统计年鉴(1998)[M].北京:中国统计出版社,1998. |
[ National Bureau of Statistics (NBS). China statistical yearbook (1998)[M]. Beijing: China Statistics Press, 1998. ] | |
[42] | 国家统计局.中国统计年鉴(2003)[M].北京:中国统计出版社,2003. |
[ National Bureau of Statistics (NBS). China statistical yearbook (2003)[M]. Beijing: China Statistics Press, 2003. ] | |
[43] | 国家统计局.中国统计年鉴(2008)[M].北京:中国统计出版社,2008. |
[ National Bureau of Statistics (NBS). China statistical yearbook (2008)[M]. Beijing: China Statistics Press, 2008. ] | |
[44] | 国家统计局.中国统计年鉴(2013)[M].北京:中国统计出版社,2013. |
[ National Bureau of Statistics (NBS). China statistical yearbook (2013)[M]. Beijing: China Statistics Press, 2013. ] | |
[45] | 杨云彦. 中国人口迁移的规模测算与强度分析[J].中国社会科学,2003(6):97-107. |
[ Yang Y Y.Into digitization: Some concepts and methods of Chinese historical geographic information system[J]. Historical Geography, 2002(6):97-107. ] |
[1] | 薛浩男, 张雪英, 吴明光, 曹天阳. 基于新闻数据的新冠疫情事件下“全球-中国”国际关系变化分析方法[J]. 地球信息科学学报, 2021, 23(2): 351-363. |
[2] | 张小东, 韩昊英, 陈宇. 2003—2018年中国地级城市土地出让交易状况及时空动态特征[J]. 地球信息科学学报, 2020, 22(9): 1823-1836. |
[3] | 宋荣, 胡业翠. 中国城市土地整治综合潜力分区与提升路径[J]. 地球信息科学学报, 2020, 22(7): 1522-1531. |
[4] | 刘纪远, 张增祥, 张树文, 颜长珍, 吴世新, 李仁东, 匡文慧, 史文娇, 黄麟, 宁佳, 董金玮. 中国土地利用变化遥感研究的回顾与展望——基于陈述彭学术思想的引领[J]. 地球信息科学学报, 2020, 22(4): 680-687. |
[5] | 张永树, 杨振凯, 訾璐, 曹一冰, 余航. 中国艾滋病空间格局和时空演化分析[J]. 地球信息科学学报, 2020, 22(2): 198-206. |
[6] | 杜培培, 侯西勇. 基于多源数据的中国海岸带地区人口空间化模拟[J]. 地球信息科学学报, 2020, 22(2): 207-217. |
[7] | 李文梁, 汪驰升, 朱武. 中国大陆地区TanDEM-X 90 m DEM误差空间分布特征[J]. 地球信息科学学报, 2020, 22(12): 2277-2288. |
[8] | 刘艳霞, 冯莉, 田慧慧, 阳少奇. 中国气候舒适度时空分布特征分析[J]. 地球信息科学学报, 2020, 22(12): 2338-2347. |
[9] | 杜震洪, 吴森森, 王中一, 汪愿愿, 张丰, 刘仁义. 基于地理神经网络加权回归的中国PM2.5浓度空间分布估算方法[J]. 地球信息科学学报, 2020, 22(1): 122-135. |
[10] | 黄梦娜,马廷. 中国道路网引起的景观破碎格局及其对保护区的影响[J]. 地球信息科学学报, 2019, 21(8): 1183-1195. |
[11] | 林中立, 徐涵秋, 黄绍霖. 基于DMSP/OLS夜间灯光影像的中国东部沿海地区城市扩展动态监测[J]. 地球信息科学学报, 2019, 21(7): 1074-1085. |
[12] | 方颖, 李连发. 基于机器学习的高精度高分辨率气象因子时空估计[J]. 地球信息科学学报, 2019, 21(6): 799-813. |
[13] | 鹿明, 廖小罕, 岳焕印, 黄诗峰, 徐晨晨, 卢海英, 柏艺琴. 面向中国洪涝灾害应急监测的无人机空港布局[J]. 地球信息科学学报, 2019, 21(6): 854-864. |
[14] | 张婷, 程昌秀. 顾及空间集聚程度的中国高温灾害危险性评价[J]. 地球信息科学学报, 2019, 21(6): 865-874. |
[15] | 周日平. 中国荒漠化分区与时空演变[J]. 地球信息科学学报, 2019, 21(5): 675-687. |
|