地球信息科学学报 ›› 2018, Vol. 20 ›› Issue (8): 1190-1200.doi: 10.12082/dqxxkx.2018.180046
申明1,2(), 王思远1,*(
), 马元旭1, 苏理宏3, 游永发1,2
收稿日期:
2018-01-15
修回日期:
2018-03-19
出版日期:
2018-08-25
发布日期:
2018-08-24
通讯作者:
王思远
E-mail:shenming@radi.ac.cn;wangsy@radi.ac.cn
作者简介:
作者简介:申明(1993-),女,硕士生,主要从事遥感与GIS应用研究。E-mail:
基金资助:
SHEN Ming1,2(), WANG Siyuan1,*(
), MA Yuanxu1, SU Lihong3, YOU Yongfa1,2
Received:
2018-01-15
Revised:
2018-03-19
Online:
2018-08-25
Published:
2018-08-24
Contact:
WANG Siyuan
E-mail:shenming@radi.ac.cn;wangsy@radi.ac.cn
Supported by:
摘要:
传统浑浊度时空变化模式研究依靠野外观测实验,需要投入大量人力物力,模型适用范围亦非常有限。本文利用自组织网络(SOM),直接从长时序遥感影像中提取典型浑浊模式,分析浑浊度年内、年际变化特征。以黄河河口附近海域为研究区,提取出近15年的6类典型浑浊模式。典型特征显示,研究区内主要有2个浑浊区,位于渤海湾西部和南部,以及河口外和莱州湾西北部;6类模式中四类以年为周期过渡更替,冬春季浑浊度较高,夏秋季浑浊度较低;多年浑浊模式逐渐由中浑浊向清澈模式变化,整体浑浊度有降低趋势。浑浊水体分布主要受河口潮流、环流等海洋动力和风浪影响,结合研究区气象观测数据分析,海面风浪变化是造成浑浊模式更替的主要原因,黄河入海泥沙影响范围仅局限于河口口门周边。利用统计参数分析和2007年各月悬浮泥沙浓度反演结果比较,评价SOM分类效果,结果表明SOM提取的模式间具有显著差异,一定程度上能够代替经验模型反映区域浑浊特征。SOM神经网络能够从长时序遥感影像中直接提取浑浊水体典型分布模式,分析海岸带地区水体浑浊度变化的时空特征,对了解复杂水体泥沙输运及优化水资源利用具有重要应用价值。
申明, 王思远, 马元旭, 苏理宏, 游永发. 基于自组织网络的黄河口浑浊模式研究[J]. 地球信息科学学报, 2018, 20(8): 1190-1200.DOI:10.12082/dqxxkx.2018.180046
SHEN Ming,WANG Siyuan,MA Yuanxu,SU Lihong,YOU Yongfa. Turbidity Patterns Identification Based on Self-organizing Maps at Yellow River Estuary[J]. Journal of Geo-information Science, 2018, 20(8): 1190-1200.DOI:10.12082/dqxxkx.2018.180046
[1] |
Güttler F N, Niculescu S, Gohin F.Turbidity retrieval and monitoring of Danube Delta waters using multi-sensor optical remote sensing data: An integrated view from the delta plain lakes to the western-northwestern Black Sea coastal zone[J]. Remote Sensing of Environment, 2013,132(6):86-101.
doi: 10.1016/j.rse.2013.01.009 |
[2] | Loisel H, Mangin A, Vantrepotte V, et al.Variability of suspended particulate matter concentration in coastal waters under the Mekong's influence from ocean color (MERIS) remote sensing over the last decade[J]. Remote Sensing of Environment, 2014,150(2):218-230. |
[3] |
Miller R L, Liu C C, Buonassissi C J, et al.A Multi-Sensor Approach to Examining the Distribution of Total Suspended Matter (TSM) in the Albemarle-Pamlico Estuarine System, NC, USA[J]. Remote Sensing, 2011,3(5):962-974.
doi: 10.3390/rs3050962 |
[4] | Rodríguez-Guzmán V, Gilbes-Santaella F.Using MODIS 250 m imagery to estimate Total Suspended Sediment in a tropical open bay[J]. International Journal of System Applications, Engineering & Development, 2009,1(3):36-44. |
[5] |
Hu C, Chen Z, Clayton T D, et al.Assessment of estuarine water-quality indicators using MODIS medium-resolution bands: Initial results from Tampa Bay, FL[J]. Remote Sensing of Environment, 2004,93(3):423-441.
doi: 10.1016/j.rse.2004.08.007 |
[6] | 黄海军,李成治,郭建军.黄河口海域悬沙光谱特征的研究[J].海洋科学,1994,18(5):40-44. |
[ Huang H J, Li C Z, Guo J J.A study on the spectral feature of suspended matter in the Huanghe River delta area[J]. Ocean Sciences, 1994,18(5):40-44. ] | |
[7] | 周良明,刘玉光,郭佩芳.渤海和北黄海水色光谱的特征分析[J].海洋通报,2005,24(2):13-19. |
[ Zhou L M, Liu Y G, Guo P F.Characteristics of ocean color spectrum in Bohai Sea and Northern Yellow Sea[J]. Marine Science Bulletin, 2005,24(2):13-19.] | |
[8] | 温令平,张健.遥感技术在黄河口泥沙运动及渤海湾悬沙分布研究中的应用[J].水道港口,1989(3):33-37. |
[ Wen L P, Zhang J.Analysis of the sediment transport of Huanghe River estuary and the distribution of suspended sediment in Bohai Bay by using remote sensing technology[J]. Journal of Waterway and Harbor, 1989(3):33-37. ] | |
[9] | 樊彦国,孟志河,张磊,等.基于遥感光谱反射率反演黄河口海域Ⅱ类水体悬浮泥沙浓度模型[J].海洋科学,2010,34(9):60-63. |
[ Fan Y G, Meng Z H, Zhang L, et al.Based on remote sensing spectral reflectance inversion of suspended sediment concentration model of surface water at the Yellow River Estuary[J]. Marine Sciences, 2010,34(9):60-63. ] | |
[10] |
Wang L, Zhao D, Yang J, et al.Retrieval of total suspended matter from MODIS 250 m imagery in the Bohai Sea of China[J]. Journal of Oceanography, 2012,68(5):719-725.
doi: 10.1007/s10872-012-0129-5 |
[11] |
Lu J, Chen X, Tian L, et al.Numerical simulation-aided MODIS capture of sediment transport for the Bohai Sea in China[J]. International Journal of Remote Sensing, 2014,35(11-12):4225-4238.
doi: 10.1080/01431161.2014.916045 |
[12] |
Richardson A J, Risien C, Shillington F A.Using self-organizing maps to identify patterns in satellite imagery[J]. Progress in Oceanography, 2003,59(2-3):223-239.
doi: 10.1016/j.pocean.2003.07.006 |
[13] | Kalteh A M, Hjorth P, Berndtsson R.Review of the self-organizing map (SOM) approach in water resources: Analysis, modelling and application[J]. Environmental Modelling & Software, 2008,23(7):835-845. |
[14] | Kohonen T.Self-Organizing Maps 3rd Edition[M]. Berlin Heidelberg: Springer, 2001. |
[15] |
张涛. 一种利用K均值和SOM进行遥感图像分类的方法[J].地理空间信息,2011,9(1):109-111.
doi: 10.3969/j.issn.1672-4623.2011.01.037 |
[ Zhang T.Remote sensing image classification utilizing K-means and SOM[J]. Geospatial Information, 2011,9(1):109-111. ]
doi: 10.3969/j.issn.1672-4623.2011.01.037 |
|
[16] |
任军号,吉沛琦,耿跃. SOM神经网络改进及在遥感图像分类中的应用[J].计算机应用研究,2011,28(3):1170-1172.
doi: 10.3969/j.issn.1001-3695.2011.03.107 |
[ Ren J H, Ji P Q, Geng Y.Application and improvement of SOM network in remote sensing image classification[J]. Application Research of Computer, 2011,28(3):1170-1172. ]
doi: 10.3969/j.issn.1001-3695.2011.03.107 |
|
[17] |
黄亚捷,叶回春,张世文,等.基于自组织特征映射神经网络的中国耕地生产力分区[J].中国农业科学,2015,48(6):1136-1150.
doi: 10.3864/j.issn.0578-1752.2015.06.10 |
[ Huang Y J, Ye H C, Zhang S W, et al.Zoning of arable land productivity based on self-organizing map in China[J]. Scientia Agricultura Sinica, 2015,48(6):1136-1150. ]
doi: 10.3864/j.issn.0578-1752.2015.06.10 |
|
[18] |
Céréghino R, Park Y S, Compin A, et al.Predicting the species richness of aquatic insects in streams using a limited number of environmental variables[J]. Journal of the North American Benthological Society, 2003,22(3):442-456.
doi: 10.2307/1468273 |
[19] |
Jeong K S, Hong D G, Byeon M S, et al.Stream modification patterns in a river basin: Field survey and self-organizing map (SOM) application[J]. Ecological Informatics, 2010,5(4):293-303.
doi: 10.1016/j.ecoinf.2010.04.005 |
[20] |
Lin G, Chen L.Identification of homogeneous regions for regional frequency analysis using the self-organizing map[J]. Journal of Hydrology, 2006,324(1-4):1-9.
doi: 10.1016/j.jhydrol.2005.09.009 |
[21] | 陈先德. 黄河水文[M].郑州:黄河水利出版社,1996. |
[ Chen X D.Huanghe Hydrology[M]. Zhengzhou: The Yellow River Water Conservancy Press, 1996. ] | |
[22] | 周良勇,龚淑云,刘勇,等.黄河口附近海域表层悬浮体分布及粒度特征[J].海洋地质与第四纪地质,2007,27(5):33-38. |
[ Zhou L Y, Gong S Y, Liu Y, et al.Spatial distribution and grain-size characteristics of suspended matters in surface water of Yellow River mouth[J]. Marine Geology & Quaternary geology, 2007,27(5):33-38. ] | |
[23] | 臧启运. 黄河三角洲近岸泥沙[M].北京:海洋出版社, 1996. |
[ Zang Q Y.Offshore sediment in Yellow River Delta[M]. Beijing: China Ocean Press, 1996. | |
[24] | 吴赛,张秋文.基于MODIS遥感数据的水体提取方法及模型研究[J].计算机与数字工程,2005,33(7):1-4. |
[ Wu S, Zhang Q W.Method and model of water body extraction based On remote sensing data of MODIS[J]. Computer & Digital Engineering, 2005. ] | |
[25] |
Kohonen T.Analysis of a simple self-organizing process[J]. Biological Cybernetics, 1982,44(2):135-140.
doi: 10.1007/BF00317973 |
[26] |
Aguado D, Montoya T, Borras L, et al.Using SOM and PCA for analysing and interpreting data from a P-removal SBR[J]. Engineering Applications of Artificial Intelligence, 2008,21(6):919-930.
doi: 10.1016/j.engappai.2007.08.001 |
[27] |
Chon T S.Self-Organizing Maps applied to ecological sciences[J]. Ecological Informatics, 2011,6(1):50-61.
doi: 10.1016/j.ecoinf.2010.11.002 |
[28] |
Reusch D, Alley R, Hewitson B.Relative performance of self-organizing maps and principal component analysis in pattern extraction from synthetic climatological data[J]. Polar Geography, 2005,29(3):188-212.
doi: 10.1080/789610199 |
[29] |
Bi N, Yang Z, Wang H, et al.Seasonal variation of suspended-sediment transport through the southern Bohai Strait[J]. Estuarine Coastal & Shelf Science, 2011,93(3):239-247.
doi: 10.1016/j.ecss.2011.03.007 |
[30] | 郭军,曹经福,杨艳娟. 1971-2012年环渤海沿海地区风速变化及其影响因素分析[J].气象与环境学报,2015(4):82-88. |
[ Guo J, Cao J F, Yang Y J.Variation of wind speed and its influencing factors around the Bohai coastal areas from 1971 to 2012[J]. Journal of Meteorology and Environment, 2015,31(4):82-88.] | |
[31] | 毕乃双. 黄河三角洲毗邻海域悬浮泥沙扩散和季节性变化及冲淤效应[D].青岛:中国海洋大学,2009. |
[ Bi N S, Suspended sediment dispersal off the Huanghe (Yellow River) delta and in its adjacent Bohai Sea, its seasonal variation and effect on the delta erosion-accumulation[D]. Qingdao: Ocean University of China, 2009. ] | |
[32] | 任惠茹,李国胜,郭腾蛟,等.1950-2011年渤海地区海表风场的季节特征与多尺度变化分析[J].地理科学,2017,37(9):1430-1438. |
[ Ren H R, Li G S, Guo T J, et al.Multi-scale variability of surface wind direction and speed on the Bohai Sea in 1950-2011[J]. Scientia Geographica Sinica, 2017,37(9):1430-1438. ] | |
[33] | 傅命佐,徐孝诗,程振波,等.黄渤海海岸季节性风沙气候环境[J].中国沙漠,1994,14(1):31-40. |
[ Fu M Z, Xu X S, Cheng Z B, et al.The seasonal desertification-climate environment in the coastal areas of the Yellow Sea and Bohai Sea[J]. Journal of Desert Research, 1994,14(1):31-40. ] | |
[34] | 温国义. 利用NOAA-AVHRR探讨中国北部海域的环流和悬浮泥沙沉积作用[D].青岛:中国海洋大学,2004. |
[ Wen G Y.Analysis of circulation and sedimentation of suspended sediment in northern China Sea from NOAA-AVHRR[D]. Qingdao: Ocean University of China, 2004. ] | |
[35] |
曹永旺,延军平. 1971-2013年环渤海地区风速的时空特征[J].中国沙漠,2015,35(5):1320-1329.
doi: 10.7522/j.issn.1000-694X.2015.00140 |
[ Cao Y W, Yan J P.Spatial-temporal analysis of wind speed in the Bohai rim region during 1971-2013[J]. Journal of Desert Research, 2015,35(5):1320-1329. ]
doi: 10.7522/j.issn.1000-694X.2015.00140 |
|
[36] | 崔娟. 曹妃甸近岸海域悬浮泥沙浓度遥感动态监测与分析[D].西安:长安大学,2011. |
[ Cui J.Dynamical monitor and analysis of suspended sediment concentration by remote sensing in Caofeidian offshore areas[D]. Xi'an: Chang'an University, 2011. ] |
[1] | 帅艳民, 马现伟, 曲歌, 邵聪颖, 刘涛, 刘守民, 黄华兵, 谷玲霄, 拉提帕·吐尔汗江, 梁继, 李玲. 协同多时相波谱特征的不透水面信息级联提取[J]. 地球信息科学学报, 2021, 23(1): 171-186. |
[2] | 葛咏, 刘梦晓, 胡姗, 任周鹏. 时空统计学在贫困研究中的应用及展望[J]. 地球信息科学学报, 2021, 23(1): 58-74. |
[3] | 王志华, 杨晓梅, 周成虎. 面向遥感大数据的地学知识图谱构想[J]. 地球信息科学学报, 2021, 23(1): 16-28. |
[4] | 王艳杰, 王卷乐, 魏海硕, Altansukh Ochir, Davaadorj Davaasuren, Sonomdagva Chonokhuu. 基于稀疏样点的蒙古国产草量估算方法研究[J]. 地球信息科学学报, 2020, 22(9): 1814-1822. |
[5] | 陈辉, 厉青, 王中挺, 马鹏飞, 李营, 赵爱梅. 一种基于FY3D/MERSI2的AOD遥感反演方法[J]. 地球信息科学学报, 2020, 22(9): 1887-1896. |
[6] | 蒲东川, 王桂周, 张兆明, 牛雪峰, 何国金, 龙腾飞, 尹然宇, 江威, 孙嘉悦. 基于独立成分分析和随机森林算法的城镇用地提取研究[J]. 地球信息科学学报, 2020, 22(8): 1597-1606. |
[7] | 李婉, 牛陆, 陈虹, 吴骅. 基于随机森林算法的地表温度鲁棒降尺度方法[J]. 地球信息科学学报, 2020, 22(8): 1666-1678. |
[8] | 阿依尼格尔·亚力坤, 买买提艾力·买买提依明, 刘素红, 杨帆, 何清, 刘永强. 新疆沙漠地区地表宽波段比辐射率遥感估算[J]. 地球信息科学学报, 2020, 22(8): 1743-1751. |
[9] | 邬明权, 王标才, 牛铮, 黄文江. 工程项目地球大数据监测与分析理论框架及研究进展[J]. 地球信息科学学报, 2020, 22(7): 1408-1423. |
[10] | 赵青松, 兰安军, 范泽孟, 杨青. 贵州省不同地貌形态类型土壤侵蚀强度变化的定量分析[J]. 地球信息科学学报, 2020, 22(7): 1555-1566. |
[11] | 龚围, 李丽, 柳钦火, 辛晓洲, 彭志晴, 邬明权, 牛铮, 田海峰. “一带一路”区域水电站工程生态环境影响遥感监测[J]. 地球信息科学学报, 2020, 22(7): 1424-1436. |
[12] | 朱惠, 张清凌, 张珊. 1992—2017年基于夜光遥感的中亚社会经济发展时空特征分析[J]. 地球信息科学学报, 2020, 22(7): 1449-1462. |
[13] | 叶虎平, 廖小罕, 何贤强, 岳焕印. 斯里兰卡近海海洋生态环境变化遥感监测分析[J]. 地球信息科学学报, 2020, 22(7): 1463-1475. |
[14] | 高旺旺, 冯建中, 白林燕, 杨建华, 郭雷风, 李华林, 崔梦瑞. 海南岛气溶胶时空变化及来源追溯[J]. 地球信息科学学报, 2020, 22(7): 1532-1543. |
[15] | 王维佳, 王汶, 杨熙, 赵彦云. 基于MODIS GPP产品的冬小麦保险费率厘定方法研究[J]. 地球信息科学学报, 2020, 22(7): 1578-1587. |
|