地球信息科学学报 ›› 2018, Vol. 20 ›› Issue (6): 762-771.doi: 10.12082/dqxxkx.2018.180087
• 2017年中国地理信息科学理论与方法学术年会优秀论文专辑 • 上一篇 下一篇
收稿日期:
2018-01-31
修回日期:
2018-03-09
出版日期:
2018-06-20
发布日期:
2018-06-20
通讯作者:
尹凌
E-mail:nan.lin@siat.ac.cn;yinling@siat.ac.cn
作者简介:
作者简介:林 楠(1993-),男,硕士生,主要从事手机定位数据的活动特征挖掘与模拟研究。E-mail:
基金资助:
LIN Nan1,2(), YIN Ling1,*(
), ZHAO Zhiyuan1,3
Received:
2018-01-31
Revised:
2018-03-09
Online:
2018-06-20
Published:
2018-06-20
Contact:
YIN Ling
E-mail:nan.lin@siat.ac.cn;yinling@siat.ac.cn
Supported by:
摘要:
手机的普及使手机定位数据成为分析个体时空行为特征的新兴重要数据源之一,并被逐渐应用到人口管理、城市规划、交通分析和流行病防控等众多领域的研究中。从手机定位数据中识别个体的停留区域是众多基于手机定位数据研究的重要基础环节。然而,当前常用的手机定位数据定位精度相对较低,且往往存在定位震荡和定位漂移导致的数据噪声,这些因素增加了从手机定位数据中识别停留区域的难度。为了提高从手机定位数据中识别个体停留区域的准确性,本研究结合个体行为的时空连续性,提出了一种基于滑动窗口的增长聚类算法。实验结果显示,相较常用的ST-DBSCAN算法和SMoT算法,对于采样时间间隔稀疏的手机定位数据,本研究提出的滑动窗口聚类算法在准确率方面的提升幅度最大可以达到35%。由于隐私问题,当前研究和应用中使用的大规模手机定位数据集中的时间分辨率往往较低,因此,本研究提出的滑动窗口聚类算法具有较为广泛的应用场景,可增强基于手机用户停留区域的众多研究结果的可靠性,为手机定位数据的广泛合理应用提供关键技术支撑。
林楠, 尹凌, 赵志远. 基于滑动窗口的手机定位数据个体停留区域识别算法[J]. 地球信息科学学报, 2018, 20(6): 762-771.DOI:10.12082/dqxxkx.2018.180087
LIN Nan,YIN Ling,ZHAO Zhiyuan. Detecting Individual Stay Areas from Mobile Phone Location Data Based on Moving Windows[J]. Journal of Geo-information Science, 2018, 20(6): 762-771.DOI:10.12082/dqxxkx.2018.180087
[1] | [中国工业和信息化部.2017年通信运营业统计公报[EB/OL] .., 2018-02-02 |
[ Ministry of Industry and Information Technology of the People’s Republic of China. Statistical bulletin of communications operations in 2017[EB/OL]. , 2018-02-02.] | |
[2] | Zheng Y.Trajectory data mining: An overview[J]. ACM Transactions on Intelligent Systems and Technology, 2015,6(3):29. |
[3] |
Yue Y, Lan T, Yeh A G O, et al. Zooming into individuals to understand the collective: A review of trajectory-based travel behaviour studies[J]. Travel Behaviour & Society, 2014,1(2):69-78.
doi: 10.1016/j.tbs.2013.12.002 |
[4] |
刘瑜. 社会感知视角下的若干人文地理学基本问题再思考[J].地理学报,2016,71(4):564-575.
doi: 10.11821/dlxb201604003 |
[ Liu Y.Revisiting several basic geographical concepts: A social sensing perspective[J]. Acta Geographica Sinica, 2016,71(4):564-575. ]
doi: 10.11821/dlxb201604003 |
|
[5] | 郑宇. 城市计算概述[J].武汉大学学报·信息科学版,2015,40(1):1-13. |
[ Zheng Y.Introduction to urban computing[J]. Geomatics and Information Science of Wuhan University, 2015,40(1):1-13. ] | |
[6] |
陆锋,刘康,陈洁.大数据时代的人类移动性研究[J].地球信息科学学报,2014,16(5):665-672.
doi: 10.3724/SP.J.1047.2014.00665 |
[ Lu F, Liu K, Chen J.Research on human mobility in big data era[J]. Journal of Geo-information Science, 2014,16(5):665-672. ]
doi: 10.3724/SP.J.1047.2014.00665 |
|
[7] |
Schneider C M, Belik V, Couronné T, et al.Unravelling daily human mobility motifs[J]. Journal of the Royal Society Interface, 2013,10(84):20130246.
doi: 10.1098/rsif.2013.0246 |
[8] | Phithakkitnukoon S, Horanont T, Lorenzo G D, et al.Activity-aware map: Identifying human daily activity pattern using mobile phone data[C]. Human Behavior Understanding, First International Workshop, HBU 2010, Istanbul, Turkey, August 22, 2010. Proceedings. DBLP, 2010:14-25. |
[9] |
Pei T, Sobolevsky S, Ratti C, et al.A new insight into land use classification based on aggregated mobile phone data[J]. International Journal of Geographical Information Science, 2014,28(9):1988-2007.
doi: 10.1080/13658816.2014.913794 |
[10] | 尹凌,姜仁荣,赵志远,等.利用手机通话位置数据估计城市24h人口分布误差[J].地球信息科学学报,2017,19(6):763-771. |
[ Yin L, Jiang R R, Zhao Z Y, et al.Exploring the bias of estimating 24-hour population distributions using call detail records[J]. Journal of Geo-information Science, 2017,19(6):763-771. ] | |
[11] |
Calabrese F, Lorenzo G D, Liu L, et al.Estimating origin-destination flows using mobile phone location data[J]. IEEE Pervasive Computing, 2011,10(4):36-44.
doi: 10.1109/MPRV.2011.41 |
[12] |
Fang Z X, Yang X P, Xu Y, et al.Spatiotemporal model for assessing the stability of urban human convergence and divergence patterns[J]. International Journal of Geographical Information Science, 2017,31(11):2119-2141.
doi: 10.1080/13658816.2017.1346256 |
[13] |
Brdar S, Gavrić K, Ćulibrk D, et al.Unveiling spatial epidemiology of HIV with mobile phone data[J]. Scientific reports, 2016,6:19342.
doi: 10.1038/srep19342 pmid: 4725841 |
[14] |
Isdory A, Mureithi E W, Sumpter D J.The impact of human mobility on HIV transmission in kenya[J]. Plos One, 2015,10(11):e0142805.
doi: 10.1371/journal.pone.0142805 pmid: 4657931 |
[15] |
Mao L, Yin L, Song X Q, et al.Mapping intra-urban transmission risk of dengue fever with big hourly cellphone data[J]. Acta Tropica, 2016,162:188-195.
doi: 10.1016/j.actatropica.2016.06.029 pmid: 27364921 |
[16] |
Spaccapietra S, Parent C, Damiani M L, et al.A conceptual view on trajectories[J]. Data & Knowledge Engineering, 2008,65(1):126-146.
doi: 10.1016/j.datak.2007.10.008 |
[17] | Zheng Y, Chen Y K, Xie X, et al.GeoLife2.0: A Location-Based Social Networking Service[C]. Tenth International Conference on Mobile Data Management: Systems, Services and Middleware. IEEE, 2009:357-358. |
[18] | Zheng Y, Xie X, Ma W Y.GeoLife: A collaborative social networking service among user, location and trajectory[J]. Bulletin of the Technical Committee on Data Engineering, 2011,33(2):32-39. |
[19] |
Bao J, Zheng Y, Wilkie D, et al.Recommendations in location-based social networks: A survey[J]. Geoinformatica, 2015,19(3):525-565.
doi: 10.1007/s10707-014-0220-8 |
[20] | Lian D F, Xie X.Mining check-in history for personalized location naming[J]. Acm Transactions on Intelligent Systems & Technology, 2014,5(2):1-25. |
[21] | Ahas R, Laineste J, Aasa A, et al.The spatial accuracy of mobile positioning: Some experiences with geographical studies in Estonia[M]. Location based services and telecartography. Springer Berlin Heidelberg, 2007:445-460. |
[22] |
Ahas R, Aasa A, Silm S, et al.Mobile positioning in space-time behaviour studies: social positioning method experiments in estonia[J]. American Cartographer, 2007,34(4):259-273.
doi: 10.1559/152304007782382918 |
[23] |
Vajakas T, Vajakas J, Lillemets R.Trajectory reconstruction from mobile positioning data using cell-to-cell travel time information[J]. International Journal of Geographical Information Science, 2015,29(11):1941-1954.
doi: 10.1080/13658816.2015.1049540 |
[24] | Iovan C, Olteanu-Raimond A M, Couronné T, et al. Moving and calling: Mobile phone data quality measurements and spatiotemporal uncertainty in human mobility studies[M]. Geographic Information Science at the Heart of Europe. Springer, Cham, 2013:247-265. |
[25] | Ester M, Kriegel H P, Xu X.A density-based algorithm for discovering clusters a density-based algorithm for discovering clusters in large spatial databases with noise[C]. International Conference on Knowledge Discovery and Data Mining. AAAI Press, 1996:226-231. |
[26] |
Birant D, Kut A.ST-DBSCAN: An algorithm for clustering spatial-temporal data[J]. Data & Knowledge Engineering, 2007,60(1):208-221.
doi: 10.1016/j.datak.2006.01.013 |
[27] | Palma A T, Bogorny V, Kuijpers B, et al.A clustering-based approach for discovering interesting places in trajectories[C]. ACM Symposium on Applied Computing. DBLP, 2008:863-868. |
[28] | 曹劲舟,涂伟,李清泉,等.基于大规模手机定位数据的群体活动时空特征分析[J].地球信息科学学报,2017,19(4):467-474. |
[ Cao J Z, Tu W, Li Q Q, et al.Spatio-temporal analysis of aggregated human activities based on massive mobile phone tracking data[J]. Journal of Geo-information Science, 2017,19(4):467-474. ] | |
[29] | Alvares L O, Bogorny V, Kuijpers B, et al.A model for enriching trajectories with semantic geographical information[C]. ACM International Symposium on Advances in Geographic Information Systems. ACM, 2007:22. |
[30] | Horn C, Klampfl S, Cik M, et al.Into digitization: Some concepts and methods of Chinese historical geographic information system[J]. Historical Geography, 2002(2405):49-56. |
[31] | Kang J H.Extracting places from traces of locations[J]. Acm Sigmobile Mobile Computing & Communications Review, 2005,9(3):58-68. |
[32] |
Widhalm P, Yang Y, Ulm M, et al.Discovering urban activity patterns in cell phone data[J]. Transportation, 2015,42(4):597-623.
doi: 10.1007/s11116-015-9598-x |
[1] | 谢聪慧, 吴世新, 张晨, 孙文涛, 何海芳, 裴韬, 罗格平. 基于谱系聚类的全球各国新冠疫情时间序列特征分析[J]. 地球信息科学学报, 2021, 23(2): 236-245. |
[2] | 韩珂珂, 邢子瑶, 刘哲, 刘峻明, 张晓东. 重大公共卫生事件中的舆情分析方法研究——以新冠肺炎疫情为例[J]. 地球信息科学学报, 2021, 23(2): 331-340. |
[3] | 张琛, 马祥元, 周扬, 郭仁忠. 基于用户情感变化的新冠疫情舆情演变分析[J]. 地球信息科学学报, 2021, 23(2): 341-350. |
[4] | 高楹, 宋辞, 郭思慧, 裴韬. 接驳地铁站的共享单车源汇时空特征及其影响因素[J]. 地球信息科学学报, 2021, 23(1): 155-170. |
[5] | 陈文静, 李锐, 董广胜, 李江. 网络地理信息服务中用户空间访问聚集行为研究[J]. 地球信息科学学报, 2021, 23(1): 93-103. |
[6] | 张政, 华一新, 张亚军, 曾梦熊, 杨振凯. 以节点为中心的关系边聚类与可视化算法[J]. 地球信息科学学报, 2020, 22(9): 1779-1788. |
[7] | 姚可桢, 岳书平. 网络大数据下的中国现代食甜习惯空间分布特征及其影响因素研究[J]. 地球信息科学学报, 2020, 22(6): 1202-1215. |
[8] | 项秋亮, 邬群勇, 张良盼. 一种逐级合并OD流向时空联合聚类算法[J]. 地球信息科学学报, 2020, 22(6): 1394-1405. |
[9] | 周琦, 高长春. 城市创意产业空间动态集聚演化的计算与可视优化方法[J]. 地球信息科学学报, 2020, 22(5): 1033-1048. |
[10] | 赵斌, 韩晶晶, 史覃覃, 吉根林, 刘信陶, 俞肇元. 语义轨迹建模与挖掘研究进展[J]. 地球信息科学学报, 2020, 22(4): 842-856. |
[11] | 高海峰, 葛莹, 张杰, 肖胜昌, 陈科. 面向复杂地形的坡位K-means聚类划分研究[J]. 地球信息科学学报, 2020, 22(3): 474-481. |
[12] | 何惠馨, 范俊甫, 陈文贺, 周玉科, 张鹏, 俞宵. 基于亮度补偿的遥感影像阴影遮挡道路提取方法[J]. 地球信息科学学报, 2020, 22(2): 258-267. |
[13] | 孙小芳. 夜光遥感支持下的城市人口核密度空间化及自相关分析[J]. 地球信息科学学报, 2020, 22(11): 2256-2266. |
[14] | 裴韬, 舒华, 郭思慧, 宋辞, 陈洁, 刘亚溪, 王席. 地理流的空间模式:概念与分类[J]. 地球信息科学学报, 2020, 22(1): 30-40. |
[15] | 邓敏, 蔡建南, 杨文涛, 唐建波, 杨学习, 刘启亮, 石岩. 多模态地理大数据时空分析方法[J]. 地球信息科学学报, 2020, 22(1): 41-56. |
|