地球信息科学学报 ›› 2018, Vol. 20 ›› Issue (10): 1520-1528.doi: 10.12082/dqxxkx.2018.180119
詹国旗(), 杨国东*(
), 王凤艳, 辛秀文, 国策, 赵强
收稿日期:
2018-03-01
修回日期:
2018-07-25
出版日期:
2018-10-25
发布日期:
2018-10-17
作者简介:
作者简介:詹国旗(1993-),男,硕士生,吉主要从事遥感湿地信息提取方法的研究和应用。E-mail:
基金资助:
ZHAN Guoqi(), YANG Guodong*(
), WANG Fengyan, XIN Xiuwen, GUO Ce, ZHAO Qiang
Received:
2018-03-01
Revised:
2018-07-25
Online:
2018-10-25
Published:
2018-10-17
Contact:
YANG Guodong
Supported by:
摘要:
由于季节性的植被动态和水文波动,湿地遥感影像分类常常比较困难。本文采用优化特征空间的随机森林算法(Random Forest)对吉林省白城市通榆县东部地区预处理后的GF-2影像进行湿地分类研究,具体分为2步:① 对研究区遥感影像进行多尺度分割和对象特征的提取。针对一些学者获取最佳分割尺度时仍受主观因素影响较大的情况,本文通过改进全局最优分割方法来获得最佳分割尺度。② 在最优分割的基础上,基于特征重要性对随机森林分类算法的特征空间进行优化,以得到最佳的随机森林分类结果,并与相同条件下(同数据、同分割尺度、同训练样本,同特征空间)的K-NN、SVM、CART 3种算法以及未优化特征空间的RF算法的分类结果进行了比较。结果表明,基于优化特征空间的RF算法的分类结果总精度和Kappa系数分别为93.038%和0.9177,而K-NN、SVM和CART 3种分类算法的分类结果的总精度分别为83.357%、78.068%、77.136%,未优化特征空间的RF算法分类结果总精度为90.937%。相较于K-NN、SVM、CART 3种分类算法,RF算法在GF-2湿地影像数据中具有更好的分类性能,同时优化特征空间的RF算法精度有所提高,在湿地资源管理中可以发挥非常重要的作用。
詹国旗, 杨国东, 王凤艳, 辛秀文, 国策, 赵强. 基于特征空间优化的随机森林算法在GF-2影像湿地分类中的研究[J]. 地球信息科学学报, 2018, 20(10): 1520-1528.DOI:10.12082/dqxxkx.2018.180119
ZHAN Guoqi,YANG Guodong,WANG Fengyan,XIN Xiuwen,GUO Ce,ZHAO Qiang. The Random Forest Classification of Wetland from GF-2 Imagery Based on the Optimized Feature Space[J]. Journal of Geo-information Science, 2018, 20(10): 1520-1528.DOI:10.12082/dqxxkx.2018.180119
表3
初始特征空间
特征名称 | |
---|---|
光谱特征 | Mean B、Mean G、Mean R、Mean NIR、Standard deviation B、Standard deviation G、Standard deviation R、Standard deviation NIR、Brightness、AVE(B、R、G 3波段均值) 、Ratio to scene R、Ratio to scene G、Ratio to scene B、Ratio to scene NIR |
几何特征 | Area、Length/Width、Width、Asymmetry、Border index、Compactness、Density、Rectangular Fit、Shape index、Number of edges(polygon) 、Stddev of length of edges(polygon) |
纹理特征 | GLCM Homogeneity PC2(all dir.) 、GLCM Contrast PC2(all dir.) 、GLCM Dissimilarity PC2(all dir.) 、GLCM Entropy PC2(all dir.) 、GLCM Ang.2nd moment PC2(all dir.) 、GLCM Mean PC2(all dir.) 、GLCM StdDev PC2(all dir.) 、GLDV Entropy PC2(all dir.) 、GLDV Ang.2nd moment PC2(all dir.) 、GLDV Mean PC2(all dir.) 、GLDV Contrast PC2(all dir.) |
自定义特征 | BRITHTEN DIFFER(相邻对象亮度差)、SR、SRWC、percent(B)、percent(G)、percent(R)、Max.diff、Mean NDVI、Mean NDWI、Mean PC1、Mean PC2、Standard deviation NDVI、Standard deviation NDWI、Standard deviation PC1、Standard deviation PC2 |
[1] |
Tong L, Xu X, Fu Y, et al.Wetland changes and their responses to climate change in the “Three-River Headwaters” region of China since the 1990s[J]. Energies, 2014,7(4):2515-2534.
doi: 10.3390/en7042515 |
[2] |
Thakur J K, Srivastava P K, Singh S K, et al.Ecological monitwring of wetlands in semiarid region of Konya closed Basin Turkey[J]. Regional Environmental Change, 2012,12(1):133-144.
doi: 10.1007/s10113-011-0241-x |
[3] |
Davranche A, Lefebvre G, Poulin B.Wetland monitoring using classification trees and SPORT-5 seasonal time series[J]. Remote Sensing Environment, 2010,114(3):552-562.
doi: 10.1016/j.rse.2009.10.009 |
[4] |
Hong S, Jang H, Kim N, Sohn H.Water area extraction using RADARSAT SAR imagery combined with Landsat imagery and terrain information[J]. Sensors, 2015,15(3):6652-6667.
doi: 10.3390/s150306652 |
[5] |
Chen Y, He X, Wang J.Classification of coastal wetlands in eastern China using polarimetric SAR data[J]. Arabian Journal of Geosciences, 2015,8(12):10203-10211.
doi: 10.1007/s12517-015-1940-2 |
[6] |
Han X, Chen X, Feng L.Four decades of winter wetland changes in Poyang Lake based on Landsat observations between 1973 and 2013[J]. Remote Sensing Environment, 2015,156:426-437.
doi: 10.1016/j.rse.2014.10.003 |
[7] | Zhang S, Zhang C, Zhang L, et al.Wetland remote sensing classification using support vector machine optimized with genetic algorithm: A case study in Honghe Nature National Reserve[J]. Scientia Geograpgica Sinica, 2012,32(4):435-441. |
[8] | Liu L, Zang S, Na X, et al.Wetland mapping in Zhalong Natural Reserve using optical and radar remotely sensed data and ancillary topographical data[J]. Geographic Geo-information Science, 2013,29(1):36-40. |
[9] |
Laba M, Blair B, Downs R, et al.Use of textural measurements to map invasive wetland plants in the Hudson River National Estuarine Research Reserve with IKONOS satellite imagery[J]. Remote Sens. Environ, 2010,114(4):876-886.
doi: 10.1016/j.rse.2009.12.002 |
[10] |
Dronova I, Gong P, Wang L.Object-based analysis and change detection of major wetland cover types and their classification uncertainty during the low water period at Poyang Lake, China[J]. Remote Sensing Environment, 2011,115(12):3220-3236.
doi: 10.1016/j.rse.2011.07.006 |
[11] |
Blaschke T, Hay G J, Kelly M, et al.Geographic object-based image analysis-towards a new paradigm[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014,87(100):180-191.
doi: 10.1016/j.isprsjprs.2013.09.014 pmid: 3945831 |
[12] |
Dronova I, Gong P, Wang L, et al.Mapping dynamic cover types in a large seasonally flooded wetland using extended principal component analysis and object-based classification[J]. Remote Sensing Environment, 2015,158:193-206.
doi: 10.1016/j.rse.2014.10.027 |
[13] |
Blaschke T.Object-based image analysis for remote sensing[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2010,65(1):2-16.
doi: 10.1016/j.isprsjprs.2009.06.004 |
[14] | 乔婷,张怀清,陈永富,等.基于NDVI分割与面向对象的东洞庭湖湿地植被信息提取技术[J].西北林学院学报,2013,28(4):170-175. |
[ Qiao T, Zhang H Q, Chen Y F, et al.Extraction of vegetation information based on NDVI segmentation and object oriented Method[J]. Journal of Northwest Forestry College, 2013,28(4):170-175. ] | |
[15] |
Gonzalez-Audieana M, Saleta J L, Catalan R G, et al.Fusion of multispectral and Panchromatic images using improved HIS and PCA mergers based on wavelet decomposition[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004,42(6):1291-1299.
doi: 10.1109/TGRS.2004.825593 |
[16] | 何敏,张文君,王卫红.面向对象的最优分割尺度计算模型[J].大地测量与地球动力学,2009,29(1):106-109. |
[ He M, Zhang W J, Wang W H.Optimal segmentation scale model based on object-oriented analysis method[J]. Geodetic measurement and geodynamics, 2009,29(1):106-109. ] | |
[17] | 刘兆祎,李鑫慧,沈润平,等.高分辨率遥感图像分割的最优尺度选择[J].计算机工程与应用,2014,50(6):144-147. |
[ Liu Z Y, Li X H, Shen R P, et al.Selection of the best segmentation scale in high-resolution image segmentation[J]. Computer Engineering and Applications, 2014,50(6):144-147. ] | |
[18] |
殷瑞娟,施润和,李镜尧.一种高分辨率遥感影像的最优分割尺度自动选取方法[J].地球信息科学学报,2013,15(6):902-910.
doi: 10.3724/SP.J.1047.2014.00902 |
[ Yin R J, Shi R H, Li J Y.Automatic selection of optimal segmentation scale of high-resolution remote sensing images[J]. Journal of Geo-information Science, 2013,15(6):902-910. ]
doi: 10.3724/SP.J.1047.2014.00902 |
|
[19] | 刘毅,杜培军,郑辉,等.基于随机森林的国产小卫星遥感影像分类研究[J].测绘科学,2012,37(4):194-196. |
[ Liu Y, Du P J, Zheng H, et al.Classification of China small satellite remote sensing image based on random forests[J]. Science of Surveying and Mapping, 2012,37(4):194-196. ] | |
[20] |
Verikas A, Gelzinis A, Bacauskiene M.Mining data with random forests: A survey and results of new tests[J]. Pattern Recognition, 2011,44(2):330-349.
doi: 10.1016/j.patcog.2010.08.011 |
[21] |
Belgiu M, Dragut L.Random forest in remote sensing: A review of applications and future directions[J]. ISPRS Journal of Photngrammetry and Remote Sensing, 2016,114:24-31.
doi: 10.1016/j.isprsjprs.2016.01.011 |
[22] |
严婷婷,边红枫,廖桂项,等.森林湿地遥感信息提取方法研究现状[J].国土资源遥感,2014,26(2):11-18.
doi: 10.6046/gtzyyg.2014.02.03 |
[ Yan T T, Bian H F, Liao G X, et al.Research status of methods for mapping forested wetlands based on remote sensing[J]. Remote Sensing for Land & Resourse, 2014,26(2):11-18. ]
doi: 10.6046/gtzyyg.2014.02.03 |
|
[23] |
王书玉,张羽威,于振华.基于随机森林的洪河湿地遥感影像分类研究[J].测绘与空间地理信息,2014,37(4):83-85,93.
doi: 10.3969/j.issn.1672-5867.2014.04.022 |
[ Wang S Y, Zhang Y W, Yu Z H.Classification of Honghe wetland remote sensing image based on random forests[J]. Geomatics & Spatial Information Technology, 2014,37(4):83-85,93. ]
doi: 10.3969/j.issn.1672-5867.2014.04.022 |
|
[24] |
Dronova I.Object-based image analysis in wetland research: A review[J]. Remote Sensing, 2015,7(5):6380-6413.
doi: 10.3390/rs70506380 |
[25] | 刘舒,姜琦刚,马玥,等.基于多目标遗传随机森林特征选择的面向对象湿地分类[J].农业机械学报,2017,48(1):119-127. |
[ Liu S, Jiang Q G, Ma Y, et al.Object-oriented wetland classification based on hybrid feature selection method combining with relief multi-objective genetic algorithmand random forest[J]. Transactions of the Chinese Socierty for Agricultural Machinery, 2017,48(1):119-127. ] | |
[26] | 刘家福,李林峰,任春颖,等.基于特征优选的随机森林模型的黄河口滨海湿地信息提取研究[J].湿地科学,2018,16(2):97-105. |
[ Liu J F, Li L F, Ren C Y, et al.Information extraction of coastal wetlands in Yellow River Estuary by optimal feature-based random forest model[J]. Wetland Science, 2018,16(2):97-105. ] | |
[27] | 李方方,刘正军,徐强强,任海成.面向对象随机森林方法在湿地植被分类的应用[J].遥感信息,2018,33(1):111-116. |
[ Li F F, Liu Z J, Xu Q Q, et al.Applicationof object-oriented random forest method in wetland vegetation classification[J]. Remote Sensing Information, 2018,33(1):111-116. ] | |
[28] | Masoud M, Bahram S, Fariba M, et al. An assessment of simulated compact polarimetric SAR data for wetland classification using random forest algorithm[C]. Canadian Journal of Remote Sensing, 2017,43:5,468-484. |
[29] | 高分辨率对地观测系统吉林数据与应用中心. GF-2影像数据是2016年7月29日采集[DB/DK].[2016-7-29]. |
[ High Resolution Earth Observation System Jilin Data and Application Center. GF-2 image data was collected on July 29, 2016.[DB/DK]. [2016-7-29]. ] | |
[30] |
Saucier A, Muller J.Using principal component analysis to enhance the generalized multifractal analysis approach to textural segmentation: Theory and application to micro-resistivity well logs[J]. Physica A: Statistical Mechanics and its Applications, 2002,309(3-4):419-444.
doi: 10.1016/S0378-4371(02)00611-8 |
[31] |
Chabrier S, Emile B, Rosenberger C, et al.Unsupervised performance evaluation of image segmentation[J].EURASIP Journal on Applied Signal Processing, 2006(1):096306.
doi: 10.1155/ASP/2006/96306 |
[32] |
Breiman L.Random forests[J]. Machine Learning, 2001,45(1):5-32.
doi: 10.1023/A:1010933404324 |
[1] | 林炫歆, 肖桂荣, 周侯伯. 顾及土地利用动态变化的滑坡易发性评估方法[J]. 地球信息科学学报, 2023, 25(5): 953-966. |
[2] | 秦肖伟, 程博, 杨志平, 李林, 董文, 张新, 杨树文, 靳宗义, 薛庆. 基于时序遥感影像的西南山区地块尺度作物类型识别[J]. 地球信息科学学报, 2023, 25(3): 654-668. |
[3] | 黄帅元, 董有福, 李海鹏. 黄土高原区SRTM1 DEM高程误差校正模型构建及对比分析[J]. 地球信息科学学报, 2023, 25(3): 669-681. |
[4] | 潘雨飘, 赵翔, 王静, 张亦清, 刘耀林. 基于SMOTE-RF算法的村庄发展类型识别方法研究[J]. 地球信息科学学报, 2023, 25(1): 163-176. |
[5] | 杨洋, 邵哲平, 赵强, 潘家财, 胡雨, 梅强. 基于厦门港的海上交通事故地理空间分布及风险预测研究[J]. 地球信息科学学报, 2022, 24(9): 1676-1687. |
[6] | 吴亚楠, 郭长恩, 于东平, 段爱民, 刘玉, 董士伟, 单东方, 吴耐明, 李西灿. 基于不确定性分析的遥感分类空间分层及评估方法[J]. 地球信息科学学报, 2022, 24(9): 1803-1816. |
[7] | 聂祥琴, 陈瀚阅, 牛铮, 张黎明, 刘炜, 邢世和, 范协裕, 李家国. 基于时序影像的农业活动因子提取与闽西耕地SOC数字制图[J]. 地球信息科学学报, 2022, 24(9): 1835-1852. |
[8] | 高位, 涂伟, 李明晓, 方碧宸, 陈栋胜, 黄正东, 贺彪. 基于影响因子动态更新的都市圈国土-人口协同模拟[J]. 地球信息科学学报, 2022, 24(8): 1502-1511. |
[9] | 裴泽华, 葛淼, 李浩, 何进伟, 王聪霞. 基于随机森林模型的中国中老年人群HDL-C环境影响因素研究[J]. 地球信息科学学报, 2022, 24(7): 1286-1300. |
[10] | 郭逸飞, 吴田军, 骆剑承, 石含宁, 郜丽静. 基于不确定性迭代优化的山地植被遥感制图[J]. 地球信息科学学报, 2022, 24(7): 1406-1419. |
[11] | 高雪梅, 杨续超, 陈柏儒, 林琳. 基于随机森林模型的环渤海地区人口空间化模拟[J]. 地球信息科学学报, 2022, 24(6): 1150-1162. |
[12] | 卢奕帆, 梁颖然, 卢思言, 肖钺, 何小钰, 林锦耀. 结合“珞珈一号”夜间灯光与城市功能分区的广州市碳排放空间分布模拟及其影响因素分析[J]. 地球信息科学学报, 2022, 24(6): 1176-1188. |
[13] | 于法川, 祝善友, 张桂欣, 朱佳恒, 张南, 徐永明. 复杂山区地形条件下ERA5再分析地表气温降尺度方法[J]. 地球信息科学学报, 2022, 24(4): 750-765. |
[14] | 陈点点, 陈芸芝, 冯险峰, 武爽. 基于超参数优化CatBoost算法的河流悬浮物浓度遥感反演[J]. 地球信息科学学报, 2022, 24(4): 780-791. |
[15] | 黄钦, 杨波, 徐新创, 郝汉舟, 梁莉莉, 王敏. 基于多源空间数据和随机森林模型的长沙市茶颜悦色门店选址与预测研究[J]. 地球信息科学学报, 2022, 24(4): 723-737. |
|