地球信息科学学报 ›› 2019, Vol. 21 ›› Issue (1): 25-35.doi: 10.12082/dqxxkx.2019.180199
• 地理大数据时空模式挖掘的方法与应用研究 • 上一篇 下一篇
收稿日期:
2018-04-23
修回日期:
2018-09-23
出版日期:
2019-01-20
发布日期:
2019-01-20
作者简介:
作者简介:王陆一(1993-),男,硕士生,研究方向为城市与区域规划,时空数据分析与挖掘。E-mail:
基金资助:
Luyi WANG1,5(), Jiansheng WU1,2,*(
), Weifeng LI3,4
Received:
2018-04-23
Revised:
2018-09-23
Online:
2019-01-20
Published:
2019-01-20
Contact:
Jiansheng WU
Supported by:
摘要:
公共自行车在促进交通可持续发展、方便居民出行等方面意义重大。本文以广东省惠州市惠城区和惠阳区、韶关市区公共自行车为研究对象,利用时间序列数据分析、层次聚类、地理可视化等方法探究出行模式,利用随机森林算法分析出行行为的影响因素及其重要性程度。研究发现,惠州市惠城区和韶关市的公共自行车出行行为有规律、成规模,站点呈现生活居住、工作就业等类型;惠州市惠城区自行车使用目的多元,包括通勤、短途办事、公交接驳等,韶关市中,通勤是主要出行目的。惠州市惠阳区受到骑行道路限制,公共自行车使用率低。本研究可以为提高公共自行车系统运营效率、引导慢行交通政策制定、评估城市用地布局提供参考和建议,也能为其他区域公共自行车的研究提供借鉴作用。
王陆一, 吴健生, 李卫锋. 中小城市公共自行车出行模式与驱动机制研究[J]. 地球信息科学学报, 2019, 21(1): 25-35.DOI:10.12082/dqxxkx.2019.180199
Luyi WANG, Jiansheng WU, Weifeng LI. Usage Patterns and Driving Mechanisms of Public Bicycle Systems in Small and Medium-Sized Cities based on Space-Time Data Mining[J]. Journal of Geo-information Science, 2019, 21(1): 25-35.DOI:10.12082/dqxxkx.2019.180199
[1] |
Duran A C, Anaya-boig E, Shake J D, et al. Bicycle-sharing system socio-spatial inequalities in Brazil[J]. Journal of Transport & Health, 2018,8:262-270.
doi: 10.1016/j.jth.2017.12.011 |
[2] | 朱玮,庞宇琦,王德.自行车出行行为和决策研究进展[J].国际城市规划,2013,28(1):54-59. |
[ Zhu W, Pang Y Q, Wang D.Progress of research on bicycle travel behavior and decisions[J]. Urban Planning International, 2013,28(1):54-59. ] | |
[3] | Froehlich J, Neumann J, Oliver N.Sensing and predicting the pulse of the city through shared bicycling[C]. Pasadena: Proceedings of the International Joint Conference on Artificial Intelligence, 2009:1420-1426. |
[4] | Burden A M, Barth R.Bike-share opportunities in New York City[R]. New York: Department of City Planning, 2009:11-19. |
[5] |
O'brien O, Cheshire J, Batty M. Mining bicycle sharing data for generating insights into sustainable transport systems[J]. Journal of Transport Geography, 2014,34(219): 262-273.
doi: 10.1016/j.jtrangeo.2013.06.007 |
[6] |
刘冰,曹娟娟,周于杰,等.城市公共自行车使用活动的时空间特征研究——以杭州为例[J].城市规划学刊,2016(3):77-84.
doi: 10.16361/j.upf.201603009 |
[ Liu B, Cao J J, Zhou Y J, et al.A study on the temporal-spatial features of bicycle-sharing activities: A case of Hangzhou[J]. Urban Planning Forum, 2016(3):77-84. ]
doi: 10.16361/j.upf.201603009 |
|
[7] | 郭素萍,甄峰,尹秋怡.城市公共自行车出行时空间特征分析[J].规划师,2017,33(6):112-118. |
[ Guo S P, Zhen F, Yin Q Y.Analysis on space-temporal characters of public bicycles[J]. Planners, 2017,33(6):112-118. ] | |
[8] | 邓力凡,谢永红,黄鼎曦.基于骑行时空数据的共享单车设施规划研究[J].规划师,2017,33(10):82-88. |
[ Deng L F, Xie Y H, Huang D X.Bicycle-sharing facility planning base on riding spatio-temporal data[J]. Planners, 2017,33(10):82-88. ] | |
[9] | 朱玮,庞宇琦,王德,等.上海市闵行区公共自行车出行特征研究[J].上海城市规划,2012(6):102-107. |
[ Zhu W, Pang Y Q, Wang D, et al.Research on the travel characteristics of public bicycle in Minhang District, Shanghai[J]. Shanghai Urban Planning Review, 2012(6):102-107. ] | |
[10] |
朱玮,庞宇琦,王德,等.公共自行车系统影响下居民出行的变化与机制研究——以上海闵行区为例[J].城市规划学刊,2012(5):76-81.
doi: 10.3969/j.issn.1000-3363.2012.05.010 |
[ Zhu W, Pang Y Q, Wang D, et al.Travel behavior change after the introduction of public bicycle systems: A case study of Minhang District, Shanghai[J]. Urban Planning Forum, 2012(5):76-81. ]
doi: 10.3969/j.issn.1000-3363.2012.05.010 |
|
[11] |
Zhang Y, Thomas T, Brussel M, et al.Exploring the impact of built environment factors on the use of public bikes at bike stations: Case study in Zhongshan, China[J]. Journal of Transport Geography, 2017,58(SupC):59-70.
doi: 10.1016/j.jtrangeo.2016.11.014 |
[12] | Wang X, Lindsey G, Schoner J E, et al.Modeling bike share station activity: Effects of nearby businesses and jobs on trips to and from stations[J]. Journal of Urban Planning and Development, 2015,142(1):4015001. |
[13] |
Faghih-Imani A, Eluru N, El-Geneidy A M, et al. How land-use and urban form impact bicycle flows: Evidence from the bicycle-sharing system (BIXI) in Montreal[J]. Journal of Transport Geography, 2014,41:306-314.
doi: 10.1016/j.jtrangeo.2014.01.013 |
[14] | 广东惠民运营股份有限公司.2017. , . |
[15] | 欧彦婵. 韶关主城区自行车交通系统规划研究[J].建筑知识:学术刊,2014(B02):93-93. |
[ Ou Y C.Research on the planning of bicycle transportation system in main urban areas of Shaoguan[J]. Building Knowledge: Academic Journal, 2014(B02):93-93. ] | |
[16] | “2013 LandScan data for population distribution from the Oak Ridge National Laboratory in USA.”[EB/OL].Oak Ridge National Laboratory. . |
[17] | OpenStreetMap contributors[EB/OL]. “OpenStreetMap.” . |
[18] |
Long Y.Redefining Chinese city system with emerging new data[J]. Applied Geography, 2016, 75:36-48.
doi: 10.1016/j.apgeog.2016.08.002 |
[19] |
Jin X, Long Y, Sun W, et al.Evaluating cities' vitality and identifying ghost cities in China with emerging geographical data[J]. Cities, 2017,63:98-109.
doi: 10.1016/j.cities.2017.01.002 |
[20] |
Lathia N, Ahmed S, Capra L.Measuring the impact of opening the London shared bicycle scheme to casual users[J]. Transportation Research Part C: Emerging Technologies, 2012,22:88-102.
doi: 10.1016/j.trc.2011.12.004 |
[21] | Berndt D J, Clifford J.Using dynamic time warping to find patterns in time series[C]. Working notes of the knowledge discovery in databases workshop, 1994:359-370. |
[22] |
Kate R J.Using dynamic time warping distances as features for improved time series classification[J]. Data Mining and Knowledge Discovery, 2016,30(2):283-312.
doi: 10.1007/s10618-015-0418-x |
[23] |
El-Assi W, Mahmoud M S, Habib K N.Effects of built environment and weather on bike sharing demand: A station level analysis of commercial bike sharing in Toronto[J]. Transportation, 2017,44(3):589-613.
doi: 10.1007/s11116-015-9669-z |
[24] |
Etienne C, Latifa O.Model-based count series clustering for bike sharing system usage mining: A case study with the Vélib’ System of Paris[J]. Acm Transactions on Intelligent Systems and Technology, 2014,5(3):1-21.
doi: 10.1145/2560188 |
[25] |
Gutierrez J, Cardozo O D, Garciapalomares J C.Transit ridership forecasting at station level: An approach based on distance-decay weighted regression[J]. Journal of Transport Geography, 2011,19(6):1081-1092.
doi: 10.1016/j.jtrangeo.2011.05.004 |
[26] | 李航. 统计学习方法[M].北京:清华大学出版社,2012:55-56. |
[ Li H.Statistical learning method[M]. Beijing: Tsinghua University Press, 2012:55-56. ] | |
[27] |
Breiman L.Random forests[J]. Machine Learning, 2001,45(1):5-32.
doi: 10.1023/A:1010933404324 |
[28] |
Liu Y, Liu X, Gao S, et al.Social sensing: A new approach to understanding our socioeconomic environments[J]. Annals of the Association of American Geographers, 2015,105(3):512-530.
doi: 10.1080/00045608.2015.1018773 |
[29] |
牟乃夏,张恒才,陈洁,等.轨迹数据挖掘城市应用研究综述[J].地球信息科学学报,2015,17(10):1136-1142.
doi: 10.3724/SP.J.1047.2015.01136 |
[ Mou N X, Zhang H C, Chen J, et al.A review on the application research of trajectory data mining in urban cities[J]. Journal of Geo-information Science, 2015,17(10):1136-1142. ]
doi: 10.3724/SP.J.1047.2015.01136 |
|
[30] | Han H, Guo X, Yu H.Variable selection using mean decrease accuracy and mean decrease gini based on random forest[C]. IEEE International Conference on Software Engineering and Service Science, 2017:219-224. |
[31] |
Zhang L, Zhang J, Duan Z Y, et al.Sustainable bike-sharing systems: Characteristics and commonalities across cases in urban China[J]. Journal of Cleaner Production, 2015,97:124-133.
doi: 10.1016/j.jclepro.2014.04.006 |
[32] |
Shaheen S A, Zhang H, Martin E.Hangzhou public bicycle: Understanding early adoption and behavioral response to bikesharing in Hangzhou, China[J]. Transportation Research Record, 2011,2247(2247):34-41.
doi: 10.3141/2247-05 |
[33] |
Campbell A A, Cherry C R, Ryerson M S, et al.Factors influencing the choice of shared bicycles and shared electric bikes in Beijing[J]. Transportation Research Part C, 2016,67:399-414.
doi: 10.1016/j.trc.2016.03.004 |
[34] |
吴健生,李博,黄秀兰.小城市居民出行行为时空动态及驱动机制研究[J].地球信息科学学报,2017,19(2):176-184.
doi: 10.3724/SP.J.1047.2017.00176 |
[ Wu J S, Li B, Huang X L.Spatio-temporal dynamics and driving mechanisms of resident trip in small cities[J]. Journal of Geo-information Science, 2017,19(2):176-184. ]
doi: 10.3724/SP.J.1047.2017.00176 |
[1] | 林炫歆, 肖桂荣, 周侯伯. 顾及土地利用动态变化的滑坡易发性评估方法[J]. 地球信息科学学报, 2023, 25(5): 953-966. |
[2] | 秦肖伟, 程博, 杨志平, 李林, 董文, 张新, 杨树文, 靳宗义, 薛庆. 基于时序遥感影像的西南山区地块尺度作物类型识别[J]. 地球信息科学学报, 2023, 25(3): 654-668. |
[3] | 黄帅元, 董有福, 李海鹏. 黄土高原区SRTM1 DEM高程误差校正模型构建及对比分析[J]. 地球信息科学学报, 2023, 25(3): 669-681. |
[4] | 潘雨飘, 赵翔, 王静, 张亦清, 刘耀林. 基于SMOTE-RF算法的村庄发展类型识别方法研究[J]. 地球信息科学学报, 2023, 25(1): 163-176. |
[5] | 杨洋, 邵哲平, 赵强, 潘家财, 胡雨, 梅强. 基于厦门港的海上交通事故地理空间分布及风险预测研究[J]. 地球信息科学学报, 2022, 24(9): 1676-1687. |
[6] | 张轲, 魏伟, 周婕, 尹力, 夏俊楠. 三江源地区“三区空间”时空演化及驱动机制分析(1992―2020年)[J]. 地球信息科学学报, 2022, 24(9): 1755-1770. |
[7] | 吴亚楠, 郭长恩, 于东平, 段爱民, 刘玉, 董士伟, 单东方, 吴耐明, 李西灿. 基于不确定性分析的遥感分类空间分层及评估方法[J]. 地球信息科学学报, 2022, 24(9): 1803-1816. |
[8] | 聂祥琴, 陈瀚阅, 牛铮, 张黎明, 刘炜, 邢世和, 范协裕, 李家国. 基于时序影像的农业活动因子提取与闽西耕地SOC数字制图[J]. 地球信息科学学报, 2022, 24(9): 1835-1852. |
[9] | 高位, 涂伟, 李明晓, 方碧宸, 陈栋胜, 黄正东, 贺彪. 基于影响因子动态更新的都市圈国土-人口协同模拟[J]. 地球信息科学学报, 2022, 24(8): 1502-1511. |
[10] | 裴泽华, 葛淼, 李浩, 何进伟, 王聪霞. 基于随机森林模型的中国中老年人群HDL-C环境影响因素研究[J]. 地球信息科学学报, 2022, 24(7): 1286-1300. |
[11] | 郭逸飞, 吴田军, 骆剑承, 石含宁, 郜丽静. 基于不确定性迭代优化的山地植被遥感制图[J]. 地球信息科学学报, 2022, 24(7): 1406-1419. |
[12] | 高雪梅, 杨续超, 陈柏儒, 林琳. 基于随机森林模型的环渤海地区人口空间化模拟[J]. 地球信息科学学报, 2022, 24(6): 1150-1162. |
[13] | 卢奕帆, 梁颖然, 卢思言, 肖钺, 何小钰, 林锦耀. 结合“珞珈一号”夜间灯光与城市功能分区的广州市碳排放空间分布模拟及其影响因素分析[J]. 地球信息科学学报, 2022, 24(6): 1176-1188. |
[14] | 于法川, 祝善友, 张桂欣, 朱佳恒, 张南, 徐永明. 复杂山区地形条件下ERA5再分析地表气温降尺度方法[J]. 地球信息科学学报, 2022, 24(4): 750-765. |
[15] | 陈点点, 陈芸芝, 冯险峰, 武爽. 基于超参数优化CatBoost算法的河流悬浮物浓度遥感反演[J]. 地球信息科学学报, 2022, 24(4): 780-791. |
|