地球信息科学学报 ›› 2019, Vol. 21 ›› Issue (1): 68-76.doi: 10.12082/dqxxkx.2019.180235
所属专题: 人口与城市研究
• 地理大数据时空模式挖掘的方法与应用研究 • 上一篇 下一篇
收稿日期:
2018-05-10
修回日期:
2018-11-21
出版日期:
2019-01-20
发布日期:
2019-01-20
通讯作者:
马明国
E-mail:Panbilin_nju@163.com;mmg@swu.edu.cn
作者简介:
作者简介:潘碧麟(1997-),女,硕士生,主要从事大数据与智慧城市研究。E-mail:
基金资助:
Bilin PAN1,3(), Jianghao WANG2, Yong GE2, Mingguo MA3,*(
)
Received:
2018-05-10
Revised:
2018-11-21
Online:
2019-01-20
Published:
2019-01-20
Contact:
Mingguo MA
E-mail:Panbilin_nju@163.com;mmg@swu.edu.cn
Supported by:
摘要:
随着区域一体化进程的加快,中国城市群快速地发展起来,城市群城际间的人口流动研究得到了国内外学者的关注。城市群空间结构的研究以地理实体空间分析为主,城际人口流动的研究多使用传统统计数据,而将大数据运用于城市群空构特征,并结合传统的社会经济统计数据对该区域人口流动的影响因素进行分析。研究发现:① 微博签到数据进一步解释了成渝城市群呈现出“双核多中心”的组团特征,成都市和重庆主城构成了“双核”;② 微博人口流动的方向会受到行政区划的影响,微博人口流动的强度呈现出一定的等级差异;③ 微博人口流动的强度与方向同社会经济发展水平呈现出相对一致性,即地区生产总值越高、人口规模越大或交通联系强度越强,则人口流动越强烈。
潘碧麟, 王江浩, 葛咏, 马明国. 基于微博签到数据的成渝城市群空间结构及其城际人口流动研究[J]. 地球信息科学学报, 2019, 21(1): 68-76.DOI:10.12082/dqxxkx.2019.180235
Bilin PAN, Jianghao WANG, Yong GE, Mingguo MA. Spatial Structure and Population Flow Analysis in Chengdu-Chongqing Urban Agglomeration based on Weibo Check-in Big Data[J]. Journal of Geo-information Science, 2019, 21(1): 68-76.DOI:10.12082/dqxxkx.2019.180235
[1] |
Graham M.Neogeography and the palimpsests of place: Web2.0 and the construction of a virtual earth[J]. Tidjschrift Voor Economishe en Social Geografie, 2010,101(4):422-436.
doi: 10.1111/j.1467-9663.2009.00563.x |
[2] |
Haklay M, Singleton A, Parker C.Web mapping 2.0: The neogeography of the geoweb[J]. Geography Compass, 2008,2(6):2011-2039.
doi: 10.1111/j.1749-8198.2008.00167.x |
[3] |
Pinto N, António P A, Roca J.Applicability and calibration of an irregular cellular automata model for land use change[J]. Computers, Environment and Urban Systems, 2017,65:93-102.
doi: 10.1016/j.compenvurbsys.2017.05.005 |
[4] |
Arribasbel D, Sanz Gracia F.The validity of the monocentric city model in a polycentric age: US metropolitan areas in 1990, 2000 and 2010[J]. Urban Geography, 2014,35(7):980-997.
doi: 10.2139/ssrn.2474858 |
[5] |
Melo P C, Graham D J, Graham. Transport-induced agglomeration effects: Evidence for US metropolitan areas[J]. Regional Science Policy and Practice, 2018,10(1):37-47.
doi: 10.1111/rsp3.12116 |
[6] |
方创琳. 城市群空间范围识别标准的研究进展与基本判断[J].城市规划学刊,2009,4(3):1-5.
doi: 10.3969/j.issn.1000-3363.2009.04.001 |
[ Fang C L.Research progress and general definition about identification standards of urban agglomeration space[J]. Urban Planning Forum, 2009,4(3):1-5. ]
doi: 10.3969/j.issn.1000-3363.2009.04.001 |
|
[7] |
宋吉涛,方创琳,宋敦江.中国城市群空间结构的稳定性分析[J].地理学报,2006,61(12):1311-1325.
doi: 10.3321/j.issn:0375-5444.2006.12.008 |
[ Song J T, Fang C L, Song D J.Spatial structure stability of urban agglomerations in China[J]. Acta Geographica Sinica, 2006,61(12):1311-1325. ]
doi: 10.3321/j.issn:0375-5444.2006.12.008 |
|
[8] |
姚士谋,陈爽.长江三角洲地区城市空间演化趋势[J].地理学报,1998,53(S):1-10.
doi: 10.11821/xb1998s1001 |
[ Yao S M, Chen S.The trend of urban spatial evolution in the Yangtze river delta[J]. Acta Geographica Sinica, 1998,53(S):1-10. ]
doi: 10.11821/xb1998s1001 |
|
[9] |
王志宪,虞孝感,徐科峰.长江三角洲地区可持续发展的态势与对策[J].地理学报,2005,60(3):381-391.
doi: 10.3321/j.issn:0375-5444.2005.03.004 |
[ Wang Z X, Yu X G, Xu K F.Situation and suggestions of sustainable development in the Yangtze river delta[J]. Acta Geographica Sinica, 2005,60(3):381-391. ]
doi: 10.3321/j.issn:0375-5444.2005.03.004 |
|
[10] |
蔺雪芹,方创琳.城市群工业发展的生态环境效应分析—以武汉城市群为例[J].地理研究,2010,29(12):2233-2243.
doi: 10.3969/j.issn.1007-6301.2004.04.013 |
[ Lin X Q, Fang C L.Research on the eco-environment effect of industrial development in city group: A case of Wuhan city group[J]. Geographical Research, 2010,29(12):2233-2243. ]
doi: 10.3969/j.issn.1007-6301.2004.04.013 |
|
[11] |
陈浩,陆林,郑嬗婷.基于旅游流的城市群旅游地旅游空间网络结构分析:以珠江三角洲城市群为例[J].地理学报,2011,66(2):257-266.
doi: 10.11821/xb201102011 |
[ Chen H, Lu L, Zheng S T.Spatial network structure of the tourism destinations in urban agglomerations based on tourist flow: A case study of the Pearl river delta[J]. Acta Geographica Sinica, 2011,66(2):257-266. ]
doi: 10.11821/xb201102011 |
|
[12] | 方创琳. 中国西部地区城市群形成发育现状与建设重点[J].干旱区地理,2010,33(5):667-675. |
[ Fang C L.Development status and key points of construction of urban agglomerations in west regions of China[J]. Arid Land Geography, 2010,33(5):667-675. ] | |
[13] | 何丰. 成渝城市群空间结构与发展趋势研究[D].成都:四川省社会科学院,2016. |
[ He F.Research on spatial structure and development trend of Chengdu-Chongqing urban agglomeration[D]. Chengdu: Sichuan Academy of Social Sciences, 2016. ] | |
[14] | 程前昌. 成渝城市群的生长发育与空间演化[D].上海:华东师范大学,2015. |
[ Cheng Q C.Growth and spatial evolution of Chengdu-Chongqing urban agglomeration[D]. Shanghai: East China Normal University, 2015. ] | |
[15] |
蒋奕廷,蒲波.基于引力模型的成渝城市群吸引力格局研究[J].软科学,2017,31(2):98-102.
doi: 10.13956/j.ss.1001-8409.2017.02.21 |
[ Jiang Y T, Pu B.Analysis of attraction pattern in Chengdu-Chongqing urban agglomeration based on a gravity model[J]. Soft Science, 2017,31(2):98-102. ]
doi: 10.13956/j.ss.1001-8409.2017.02.21 |
|
[16] |
王春杨,吴国誉,张超.基于DMSP/OLS夜间灯光数据的成渝城市群空间结构研究[J].城市发展研究,2015,22(11):20-24.
doi: 10.3969/j.issn.1006-3862.2015.11.024 |
[ Wang C Y, Wu G Y, Zhang C.Research on spatial structure of the Chengdu-Chongqing urban agglomeration based on the DMSP/OLS night-time light data[J]. Urban Development Studies, 2015,22(11):20-24. ]
doi: 10.3969/j.issn.1006-3862.2015.11.024 |
|
[17] | 杨任飞,罗红霞,周盛,等.夜间灯光数据驱动的成渝城市群空间形成过程重建及分析[J].地球信息科学学报,2017,19(5):653-661. |
[ Yang R F, Luo H X, Zhou S, et al.Restoring and analyzing the space forming process of Chengdu-Chongqing urban agglomeration by using DMSP/OLS night-time light data[J]. Journal of Geo-information Science, 2017,19(5):653-661. ] | |
[18] |
方创琳. 中国城市群研究取得的重要进展与未来发展方向[J].地理学报,2014,69(8):1130-1144.
doi: 10.11821/dlxb201408009 |
[ Fang C L.Progress and the future direction of research into urban agglomeration in China[J]. Acta Geographica Sinica, 2014,69(8):1130-1144. ]
doi: 10.11821/dlxb201408009 |
|
[19] |
Lin J, Cromley R G.Evaluating geo-located Twitter data as a control layer for areal interpolation of population[J]. Applied Geography, 2015,58(2):41-47.
doi: 10.1016/j.apgeog.2015.01.006 |
[20] |
Wong D W S, Huang Q Y. “Voting with their feet”: Delineating the sphere of influence using social media data[J]. International Journal of Geo-information, 2017,6(11):325-341.
doi: 10.3390/ijgi6110325 |
[21] |
Graham M, Stephens M, Hale S.Featured graphic: Mapping the geoweb: A geography of Twitter[J]. Environment And Planning A, 2013,45(1):100-102.
doi: 10.1068/a45349 |
[22] |
王波,甄峰,席广亮,等.基于微博用户关系的网络信息地理研究——以新浪微博为例[J].地理研究,2013,32(2):380-391.
doi: 10.11821/yj2013020018 |
[ Wang B, Zhen F, Xi G L, et al.A study of cyber-geography based on Micro-blog users' relationship: With a case of Micro-blog[J]. Geographical Research, 2013,32(2):380-391. ]
doi: 10.11821/yj2013020018 |
|
[23] |
王录仓,严翠霞,李巍.基于新浪微博大数据的旅游流时空特征研究——以兰州市为例[J].旅游学刊,2017,32(5):94-105.
doi: 10.3969/j.issn.1002-5006.2017.05.014 |
[ Wang L C, Yan C X, Li W.Research on spatial-temporal characteristics of tourist flow based on Sina Micro-blog LBS data: A case study of Lanzhou[J]. Tourism Tribune, 2017,32(5):94-105. ]
doi: 10.3969/j.issn.1002-5006.2017.05.014 |
|
[24] |
宁鹏飞,万幼川,任福.面向新浪微博签到数据的时空热点事件检测方法[J].测绘与空间地理信息,2017,40(9):33-37.
doi: 10.3969/j.issn.1672-5867.2017.09.008 |
[ Ning P F, Wan Y C, Ren F.Sina Micro-blog for the data of time and space hot event detection method[J]. Geomatics and Spatial Information Technology, 2017,40(9):33-37. ]
doi: 10.3969/j.issn.1672-5867.2017.09.008 |
|
[25] | 韩华瑞,代侦勇.湖北省微博签到活动空间差异分析——以新浪微博为例[J].测绘与空间地理信息,2016,39(10):159-162. |
[ Han H R, Dai Z Y.The analysis of space difference of check-in activities in Hubei province: An empirical analysis of Sina Micro-blog[J]. Geomatics and Spatial Information Technology, 2016,39(10):159-162. ] | |
[26] |
甄峰,王波,陈映雪.基于网络社会空间的中国城市网络特征—以新浪微博为例[J].地理学报,2012,67(8):1031-1043.
doi: 10.1007/s11783-011-0280-z |
[ Zhen F, Wang B, Chen Y X.China's city network characteristics based on social network space: An empirical analysis of Sina Micro-blog[J]. Acta Geographica Sinica, 2012,67(8):1031-1043. ]
doi: 10.1007/s11783-011-0280-z |
|
[27] |
王贤文,王虹茵,李清纯.基于地理位置大数据的京津冀城市群短期人口流动研究[J].大连理工大学学报(社会科学版),2017,38(2):105-113.
doi: 10.19525/j.issn1008-407x.2017.02.017 |
[ Wang X W, Wang H Y, Li Q C.Location based big data analysis of the short-term population flow of Beijing, Tianjin and Hebei urban agglomeration[J]. Journal of Dalian University of Technology, 2017,38(2):105-113. ]
doi: 10.19525/j.issn1008-407x.2017.02.017 |
|
[28] |
李长风. 基于社交网络位置数据的区域流动空间特征研究——以长三角城市群为例[J].上海城市规划,2014(5):44-50.
doi: 10.3969/j.issn.1673-8985.2014.05.012 |
[ Li C F.Study on the regional space of flows based on location data from social network: A case study of city group of Yangtze river delta[J]. Shanghai Urban Planning Review, 2014(5):44-50. ]
doi: 10.3969/j.issn.1673-8985.2014.05.012 |
|
[29] |
甄峰,王波.“大数据”热潮下人文地理学研究的再思考[J].地理研究,2015,34(5):803-811.
doi: 10.11821/dlyj201505001 |
[ Zhen F, Wang B.Rethinking human geography in the age of big data[J]. Geographical Research, 2015,34(5):803-811. ]
doi: 10.11821/dlyj201505001 |
|
[30] |
武增海,李涛.高新技术开发区综合绩效空间分布研究——基于自然断点法的分析[J].统计与信息论坛,2013,28(3):82-88.
doi: 10.3969/j.issn.1007-3116.2013.03.014 |
[ Wu Z H, Li T.The comprehensive performance evaluation of the high-tech development zone: Analysis based on the natural breakpoint method[J]. Statistics and Information Forum, 2013,28(3):82-88. ]
doi: 10.3969/j.issn.1007-3116.2013.03.014 |
|
[31] |
汪明峰,宁越敏.网络信息空间的城市地理学研究:综述与展望[J].地球科学进展,2002,17(6):854-863.
doi: 10.3321/j.issn:1001-8166.2002.06.009 |
[ Wang M F, Ning Y M.The urban geography of cyberspace: Review and prospect[J]. Advances in Earth Science, 2002,17(6):854-863. ]
doi: 10.3321/j.issn:1001-8166.2002.06.009 |
[1] | 刘亚溪, 宋辞, 刘起勇, 张知新, 王席, 马佳, 陈晓, 裴韬. 重庆市新型冠状病毒肺炎流行时空特征及其与人群活动性的关系[J]. 地球信息科学学报, 2021, 23(2): 222-235. |
[2] | 方云皓, 顾康康. 基于多元数据的中国地理空间疫情风险评估探索——以2020年1月1日至4月11日COVID-19疫情数据为例[J]. 地球信息科学学报, 2021, 23(2): 284-296. |
[3] | 高楹, 宋辞, 郭思慧, 裴韬. 接驳地铁站的共享单车源汇时空特征及其影响因素[J]. 地球信息科学学报, 2021, 23(1): 155-170. |
[4] | 顾海硕, 陈鹏, 李慧波. 犯罪时空预测方法研究综述与展望[J]. 地球信息科学学报, 2021, 23(1): 43-57. |
[5] | 王志华, 杨晓梅, 周成虎. 面向遥感大数据的地学知识图谱构想[J]. 地球信息科学学报, 2021, 23(1): 16-28. |
[6] | 宋关福, 陈勇, 罗强, 武梦瑶. GIS基础软件技术体系发展及展望[J]. 地球信息科学学报, 2021, 23(1): 2-15. |
[7] | 张小东, 韩昊英, 陈宇. 2003—2018年中国地级城市土地出让交易状况及时空动态特征[J]. 地球信息科学学报, 2020, 22(9): 1823-1836. |
[8] | 张亚, 刘纪平, 周亮, 王勇, 李鹏飞. 基于DBSCAN算法的北京市顺丰快递服务设施集群识别与空间特征分析[J]. 地球信息科学学报, 2020, 22(8): 1630-1641. |
[9] | 邬明权, 王标才, 牛铮, 黄文江. 工程项目地球大数据监测与分析理论框架及研究进展[J]. 地球信息科学学报, 2020, 22(7): 1408-1423. |
[10] | 黄洁, 王姣娥. 交通大数据在人文与经济地理学的应用及学科影响[J]. 地球信息科学学报, 2020, 22(6): 1180-1188. |
[11] | 姚可桢, 岳书平. 网络大数据下的中国现代食甜习惯空间分布特征及其影响因素研究[J]. 地球信息科学学报, 2020, 22(6): 1202-1215. |
[12] | 孙威, 林晓娜. 柳州市汽车制造业企业的空间格局与影响因素[J]. 地球信息科学学报, 2020, 22(6): 1216-1227. |
[13] | 吴康敏, 王洋, 叶玉瑶, 张虹鸥. 广州市零售业态空间分异影响因素识别与驱动力研究[J]. 地球信息科学学报, 2020, 22(6): 1228-1239. |
[14] | 李涛, 王姣娥, 黄洁. 基于腾讯迁徙数据的中国城市群国庆长假城际出行模式与网络特征[J]. 地球信息科学学报, 2020, 22(6): 1240-1253. |
[15] | 赵韶雅, 杨星斗, 戴特奇, 张超. 基于刷卡数据的公共汽车客流网络复杂性日内变化研究[J]. 地球信息科学学报, 2020, 22(6): 1254-1267. |
|