地球信息科学学报 ›› 2019, Vol. 21 ›› Issue (1): 97-106.doi: 10.12082/dqxxkx.2019.180262
• 地理大数据时空模式挖掘的方法与应用研究 • 上一篇 下一篇
彭卉1,3(), 杜云艳1,2,*(
), 易嘉伟1,2, 刘张1,2, 王会蒙1,2
收稿日期:
2018-05-29
修回日期:
2018-07-15
出版日期:
2019-01-20
发布日期:
2019-01-20
作者简介:
作者简介:彭 卉(1993-),女,硕士,主要从事时空数据挖掘与城市计算研究。E-mail:
基金资助:
Hui PENG1,2,3(), Yunyan DU1,*(
), Jiawei YI1, Zhang LIU1,2, Huimeng WANG1,2
Received:
2018-05-29
Revised:
2018-07-15
Online:
2019-01-20
Published:
2019-01-20
Contact:
Yunyan DU
Supported by:
摘要:
在城镇化进程中,城市与近郊之间通过职住、货运、游憩等活动产生越来越紧密的交互联系,对于这些交互联系的准确识别和定量刻画,是理解城乡空间关系的重要手段,也能为城市的资源有效配置与合理规划提供重要的现状信息。本文通过对全北京在一日之内的手机信令数据所反映的人群移动轨迹的深入分析,融合城市的POI信息形成顾及人类活动时空信息的空间交互类型推断。以北京市为例,对城市中心与近郊之间远距离的强交互进行定性、定量和定位的探索。本文发现了北京市多尺度下空间交互模式和距离衰减规律,判断了城乡异常交互类型,对比了城乡之间和城市内部的交互模式的异同,以及基于交互类型视角提取了城乡异常交互的空间特征。研究认为,基于手机信令数据,利用停留点提取和高斯核密度估计的空间交互类型推断有效地发现了北京市周末的远距离出行类型特点,提取了其空间交互强度和空间特征,揭示了基于人类活动的北京市周末城乡交互模式。
彭卉, 杜云艳, 易嘉伟, 刘张, 王会蒙. 基于手机数据的北京市城市与近郊交互模式挖掘[J]. 地球信息科学学报, 2019, 21(1): 97-106.DOI:10.12082/dqxxkx.2019.180262
Hui PENG, Yunyan DU, Jiawei YI, Zhang LIU, Huimeng WANG. Mining Urban-rural Spatial Interaction Pattern from Mobile Data of Beijing[J]. Journal of Geo-information Science, 2019, 21(1): 97-106.DOI:10.12082/dqxxkx.2019.180262
[1] |
Crowe P R.On progress in geography[J]. Scottish Geographical Magazine, 1938,54(1):1-19.
doi: 10.1080/14702543808553767 |
[2] |
Lu Y, Liu Y.Pervasive location acquisition technologies: Opportunities and challenges for geospatial studies[J]. Computers, Environment and Urban Systems, 2012,36(2):105-108.
doi: 10.1016/j.compenvurbsys.2012.02.002 |
[3] |
李清泉,常晓猛,萧世伦,等.中国城际社交关系网络特征分析[J].深圳大学学报(理工版),2013(5):441-449.
doi: 10.3724/SP.J.1249.2013.05441 |
[ Li Q Q, Chang X M, Shaw S L, et al.Characteristics of micro-blog inter-city social interactions in China[J]. Journal of Shenzhen University Science and Engineering, 2013(5):441-449. ]
doi: 10.3724/SP.J.1249.2013.05441 |
|
[4] |
Haggett P, Cliff A D, Frey A.Locational analysis in human geography[J]. Tijdschrift Voor Economische en Sociale Geografie,1977,68(6):625-628.
doi: 10.2307/143300 |
[5] | Miller J, Horowitz E.Algorithms for real-time gathering and analysis of continuous-flow traffic data[C]. 2006 IEEE Intelligent Transportation Systems Conference,2006. |
[6] |
Matsumoto H.International urban systems and air passenger and cargo flows: Some calculations[J]. Journal of Air Transport Management, 2004,10(4):239-247.
doi: 10.1016/j.jairtraman.2004.02.003 |
[7] | Li Q, Chang X, Shaw S L, et al.Characteristics of micro-blog inter-city social interactions in China[J]. Journal of Shenzhen University Science & Engineering, 2013,30(5):441-449. |
[8] |
Liu Y, Sui Z, Kang C, et al.Uncovering patterns of inter-urban trip and spatial interaction from social media check-in data[J]. Plos One, 2014,9(1):e86026.
doi: 10.1371/journal.pone.0086026 pmid: 24465849 |
[9] |
Liu X, Gong L, Gong Y, et al.Revealing travel patterns and city structure with taxi trip data[J]. Journal of Transport Geography, 2015,43:78-90.
doi: 10.1016/j.jtrangeo.2015.01.016 |
[10] | Birkin M, Malleson N. Investigating the behaviour of Twitter users to construct an individual-level model of metropolitan dynamics[J]. National Centre for Research Methods, Southampton. . |
[11] |
Crandal D, N Snavely. Modeling people and places with internet photo collections[J]. Communications of the ACM, 2012,55(6):52-60.
doi: 10.1145/2184319.2184336 |
[12] |
Blondel V D, Decuyper A, Krings G.A survey of results on mobile phone datasets analysis[J]. Epj Data Science, 2015,4(1):1-55.
doi: 10.1140/epjds/s13688-015-0038-0 |
[13] | 刘瑜,肖昱,高松,等.基于位置感知设备的人类移动研究综述[J].地理与地理信息科学,2011,27(4):8-13. |
[ Liu Y, Xiao Y, Gao S, et al.A review of human mobility research based on location aware devices[J]. Geography and Geo-Information Science, 2011,27(4):8-7. ] | |
[14] |
Shi L, Chi G, Liu X, et al.Human mobility patterns in different communities: A mobile phone data-based social network approach[J]. Geographic Information Sciences, 2015,21(1):15-26.
doi: 10.1080/19475683.2014.992372 |
[15] |
Pei T, Sobolevsky S, Ratti C, et al.A new insight into land use classification based on aggregated mobile phone data[J]. International Journal of Geographical Information Science, 2014,28(9):1988-2007.
doi: 10.1080/13658816.2014.913794 |
[16] |
Yuan Y, Raubal M, Liu Y.Correlating mobile phone usage and travel behavior: A case study of Harbin, China[J]. Computers Environment & Urban Systems, 2012,36(2):118-130.
doi: 10.1016/j.compenvurbsys.2011.07.003 |
[17] |
Xu N, Yin L, Hu J X.Identifying home-work locations from short-term,large-scale,and regularly sampled mobile phone tracking data[J]. Geomatics & Information Science of Wuhan University, 2014,39(6):750-756.
doi: 10.13203/j.whugis20140085 |
[18] | Niu X Y, Ding L, Song X D, et al.Understanding urban spatial structure of shanghai central city based on mobile phone data[J]. China City Planning Review, 2015(3):15-23. |
[19] |
Gao S, Liu Y, Wang Y, et al.Discovering spatial interaction communities from mobile phone data[J]. Transactions in GIS, 2013,17(3):463-481.
doi: 10.1111/tgis.12042 |
[20] | 任颐,毛荣昌.手机数据与规划智慧化—以无锡市基于手机数据的出行调查为例[J].国际城市规划,2014,29(6):66-71. |
[ Ren Y, Mao R C.Cellphone data and smart plan: A case study of travel survey using cellphone data in Wuxi[J]. Urban Planning International. 2014,29(6):66-71. ] | |
[21] |
Kang C, Zhang Y, Ma X, et al.Inferring properties and revealing geographical impacts of intercity mobile communication network of China using a subnet data set[J]. International Journal of Geographical Information Science, 2013,27(3):431-448.
doi: 10.1080/13658816.2012.689838 |
[22] |
Krings G, Calabrese F, Ratti C, et al.Urban Gravity: A model for intercity telecommunication flows[J]. 2009,2009(7):L07003.
doi: 10.1088/1742-5468/2009/07/l07003 |
[23] |
陈彦光. 空间相互作用模型的形式、量纲和局域性问题探讨[J].北京大学学报:自然科学版,2009,45(2):333-338.
doi: 10.3321/j.issn:0479-8023.2009.02.023 |
[ Chen Y G.On the mathematical form,dimension,and locality of the spatial interaction model[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2009,45(2):333-338. ]
doi: 10.3321/j.issn:0479-8023.2009.02.023 |
|
[24] |
陆锋,刘康,陈洁.大数据时代的人类移动性研究[J].地球信息科学学报,2014,16(5):665-672.
doi: 10.3724/SP.J.1047.2014.00665 |
[ Lu F, Liu K, Chen J.Research on human mobility in big data era[J]. Journal of Geo-information Science, 2014,16(5):665-672. ]
doi: 10.3724/SP.J.1047.2014.00665 |
|
[25] |
常艳.城市化发展历程回顾与新型城市化发展趋势分析——以特大城市北京为例.理论月刊, 2014(9):138-142.
doi: 10.3969/j.issn.1004-0544.2014.09.030 |
[ Chang Y. Cellphone data and smart plan: A case study of travel survey using cellphone data in Wuxi[J]. Theory Monthly, 2014(9):138-142. ]
doi: 10.3969/j.issn.1004-0544.2014.09.030 |
|
[26] |
顾朝林,王法辉,刘贵利.北京城市社会区分析[J].地理学报,2003,58(6):917-926.
doi: 10.3321/j.issn:0375-5444.2003.06.015 |
[ Gu C L, Wang F H, Liu G L.Study on urban social areas in Beijing[J]. Acta Geographica Sinica, 2003,58(6):917-926. ]
doi: 10.3321/j.issn:0375-5444.2003.06.015 |
|
[27] | Gould W T S. The geography of urban-rural interaction in developing countries: Essays for Alan B[J]// Mountjoy: Potter R B, Unwin, T. Applied Geography. London and New York: Routledge, 1989. |
[28] | Ye Y, Zheng Y, Chen Y, et al.Mining individual life pattern based on location history[C]. Tenth International Conference on Mobile Data Management: Systems, Services and Middleware, 2009:1-10. |
[29] |
Peng H, Du Y, Liu Z, et al.Uncovering patterns of ties among regions within metropolitan areas using data from mobile phones and online mass media[J]. Geo-Journal, 2018(6178):1-17.
doi: 10.1007/s10708-018-9885-0 |
[30] |
Zhao P, Kwan M P, Qin K.Uncovering the spatiotemporal patterns of CO2 emissions by taxis based on Individuals' daily travel[J]. Journal of Transport Geography, 2017,62:122-135.
doi: 10.1016/j.jtrangeo.2017.05.001 |
[31] |
Bin Jiang.Head/Tail Breaks: A new classification scheme for data with a heavy-tailed distribution[J]. Professional Geographer, 2013,65(3):482-494.
doi: 10.1080/00330124.2012.700499 |
[32] |
匡文慧,杜国明.北京城市人口空间分布特征的GIS分析[J]. 地球信息科学学报,2011,13(4):506-512.
doi: 10.3724/SP.J.1047.2011.00506 |
[ Kuang W H, Du G M.Analyzing urban population spatial distribution in Beijing proper[J]. Journal of Geo-information Science, 2011,13(4):506-512. ]
doi: 10.3724/SP.J.1047.2011.00506 |
[1] | 骆钰波, 陈碧宇. 面向路网轨迹的自适应数据模型与索引结构[J]. 地球信息科学学报, 2023, 25(1): 63-76. |
[2] | 廖周伟, 关燕宁, 郭杉, 蔡丹路, 于敏, 姚武韬, 张春燕, 邓锐. 基于网格的街区尺度城市绿度度量方法[J]. 地球信息科学学报, 2022, 24(8): 1475-1487. |
[3] | 初晨, 张恒才, 陆锋. 大型商场顾客消费行为轨迹推断[J]. 地球信息科学学报, 2022, 24(6): 1034-1046. |
[4] | 黄洁, 石雯茜, 陈娱. 居民出行视角下的北京市双枢纽机场可达性研究[J]. 地球信息科学学报, 2022, 24(5): 914-924. |
[5] | 谭德明, 李延欢. 可持续TOD建设视角下的轨道站点客流潜力模型构建[J]. 地球信息科学学报, 2022, 24(12): 2356-2372. |
[6] | 赵桐, 李泽峰, 宋柳依, 熊美成, 廖一兰, 裴韬. 基于微博大数据的北京市流动人口情绪与职住分布的关系研究[J]. 地球信息科学学报, 2022, 24(10): 1898-1910. |
[7] | 甄卓, 康朝贵. 从多年份出租车出行分布数据中探测城市完备功能子区域的方法研究[J]. 地球信息科学学报, 2022, 24(10): 1982-1992. |
[8] | 张雪霞, 吴升, 赵志远, 王鹏洲, 陈佐旗, 方志祥. 基于手机信令数据的城市小活动空间人群空间分布特征[J]. 地球信息科学学报, 2021, 23(8): 1433-1445. |
[9] | 刘云舒, 赵鹏军, 吕迪. 大数据城市通勤交通模型的构建与模拟应用[J]. 地球信息科学学报, 2021, 23(7): 1185-1195. |
[10] | 李慧香, 潘云, 宫辉力, 孙颖. 机器学习方法在预测泉水潜在出露位置中的应用[J]. 地球信息科学学报, 2021, 23(6): 1028-1039. |
[11] | 施海霞, 韦玉春, 徐晗泽宇, 周爽, 程琪. 高分遥感图像相对辐射校正中的伪不变地物自动提取和优化选择[J]. 地球信息科学学报, 2021, 23(5): 903-917. |
[12] | 曾梦熊, 华一新, 张江水, 曹一冰, 张政. 多粒度时空对象动态行为表达模型与方法研究[J]. 地球信息科学学报, 2021, 23(1): 104-112. |
[13] | 赵鹏军, 曹毓书. 基于多源地理大数据与机器学习的地铁乘客出行目的识别方法[J]. 地球信息科学学报, 2020, 22(9): 1753-1765. |
[14] | 张亚, 刘纪平, 周亮, 王勇, 李鹏飞. 基于DBSCAN算法的北京市顺丰快递服务设施集群识别与空间特征分析[J]. 地球信息科学学报, 2020, 22(8): 1630-1641. |
[15] | 赵韶雅, 杨星斗, 戴特奇, 张超. 基于刷卡数据的公共汽车客流网络复杂性日内变化研究[J]. 地球信息科学学报, 2020, 22(6): 1254-1267. |
|