地球信息科学学报 ›› 2019, Vol. 21 ›› Issue (3): 445-454.doi: 10.12082/dqxxkx.2019.180316
收稿日期:
2018-07-04
修回日期:
2019-01-02
出版日期:
2019-03-15
发布日期:
2019-03-15
作者简介:
作者简介:李娅丽(1992- ),女,山东菏泽人,硕士生,研究方向为遥感信息处理与应用技术。E-mail:
基金资助:
Yali LI1(), Xiaoqin WANG1(
), Yunzhi CHEN1, Miaomiao WANG2
Received:
2018-07-04
Revised:
2019-01-02
Online:
2019-03-15
Published:
2019-03-15
Supported by:
摘要:
地表温度(Land surface Tenperature, LST)和植被覆盖度(Fractional Vegetation Coverage, FVC)是生态环境变化的重要指标因子,研究两者的时空变化及相互关系对评价区域生态环境建设、改善区域生态环境具有重要意义。本文以福建省为研究区域,利用2001-2015年MODIS 11A2 LST和13Q1 NDVI数据,在时序数据重构的基础上对福建省LST时空变化及LST与FVC的相互关系进行分析。结果表明:①2001-2015年福建省LST总体呈轻微下降趋势,尤其是2010年之后其LST明显降低。LST与FVC的空间分布具有较好的负相关一致性:在FVC较高的区域,LST值较低;在FVC较低的区域,LST较高。② LST与FVC、DEM和纬度均成负相关关系,且负相关性在一年之中随着月份的变化而呈规律性增加或降低。夏季FVC对LST的负相关性最大为0.7,冬季FVC对LST的负相关性降低为0.4。③LST随着FVC增加而降低的趋势呈现分段线性关系,存在“FVC拐点”。“FVC拐点”前后随着FVC增加LST的降低速率在夏季 “先慢后快”,而在冬季则“先快后慢”。春秋两季,LST随着FVC增加而降低的速率在“FVC拐点”前后差异变小。在夏季,当FVC大于0.4时,FVC每增加0.1可降低LST约0.77 °C,降温效果大约是FVC小于0.4时的2倍。因此如果要有效地降低夏季地表高温,要使地表植被覆盖大于40%,才能较好的发挥植被的降温的作用。④在1-8月份,FVC对LST的负相关作用存在滞后性,FVC变化对滞后一个月的LST时空分布影响更大。研究成果对福建省生态环境建设与评估具有一定的意义,对于发挥植被对区域高温抑制作用提供了重要的参考依据。
李娅丽, 汪小钦, 陈芸芝, 王苗苗. 福建省地表温度与植被覆盖度的相关性分析[J]. 地球信息科学学报, 2019, 21(3): 445-454.DOI:10.12082/dqxxkx.2019.180316
Yali LI, Xiaoqin WANG, Yunzhi CHEN, Miaomiao WANG. The Correlation Analysis of Land Surface Temperature and Fractional Vegetation Coverage in Fujian Province[J]. Journal of Geo-information Science, 2019, 21(3): 445-454.DOI:10.12082/dqxxkx.2019.180316
表2
2001-2015年福建省各站点平均每月最高气温(Tmax)和LST相关系数
站点编号 | 站点名 | 相关系数 | 站点编号 | 站点名 | 相关系数 | 站点编号 | 站点名 | 相关系数 |
---|---|---|---|---|---|---|---|---|
58725 | 邵武 | 0.956 | 58911 | 长汀 | 0.946 | 59134 | 厦门 | 0.957 |
58730 | 武夷山 | 0.963 | 58918 | 上杭 | 0.930 | 59321 | 东山 | 0.934 |
58731 | 浦城 | 0.962 | 58921 | 永安 | 0.945 | 58744 | 寿宁 | 0.936 |
58737 | 建瓯 | 0.961 | 58926 | 漳平 | 0.872 | 58818 | 宁化 | 0.935 |
58754 | 福鼎 | 0.939 | 58931 | 九仙山 | 0.923 | 58837 | 尤溪 | 0.931 |
58820 | 泰宁 | 0.948 | 58933 | 屏南 | 0.937 | 58843 | 霞浦 | 0.936 |
58834 | 南平 | 0.965 | 58944 | 平潭 | 0.934 | 9113 | 永定 | 0.934 |
58846 | 宁德 | 0.954 | 59126 | 漳州 | 0.929 | 58927 | 龙岩 | 0.810 |
58847 | 福州 | 0.946 | 59133 | 崇武 | 0.949 | 58734 | 建阳 | 0.959 |
表3
2001-2015年不同月份FVC拐点及LST变化趋势
月份 | FVC拐点 | 拐点之前 | 拐点之后 | ||
---|---|---|---|---|---|
方程式 | R2 | 方程式 | R2 | ||
1 | 0.25 | y=-7.26x+19.22 | 0.953 | y=-4.61x+18.79 | 0.990 |
2 | 0.25 | y=-6.50x+21.00 | 0.950 | y=-4.46x+20.58 | 0.996 |
3 | 0.30 | y=-4.24x+24.14 | 0.956 | y=-4.79x+24.27 | 0.996 |
4 | 0.30 | y=-3.06x+27.01 | 0.845 | y=-5.04x+27.67 | 0.984 |
5 | 0.35 | y=-2.64x+29.39 | 0.889 | y=-5.69x+30.60 | 0.983 |
6 | 0.35 | y=-2.44x+31.43 | 0.770 | y=-6.72x+33.07 | 0.994 |
7 | 0.40 | y=-3.18x+32.51 | 0.928 | y=-7.71x+34.49 | 0.996 |
8 | 0.40 | y=-3.80x+32.32 | 0.902 | y=-7.75x+34.09 | 0.995 |
9 | 0.35 | y=-4.27x+30.54 | 0.941 | y=-6.65x+31.42 | 0.994 |
10 | 0.30 | y=-5.52x+27.70 | 0.956 | y=-5.34x+27.73 | 0.988 |
11 | 0.25 | y=-6.23x+23.56 | 0.936 | y=-5.11x+23.40 | 0.990 |
12 | 0.25 | y=-6.85x+19.70 | 0.922 | y=-4.94x+19.36 | 0.988 |
[1] |
He J J, Yu Y, Yu L J, et al.Impacts of uncertainty in land surface information on simulated surface temperature and precipitation over China[J]. International Journal of Climatology, 2017,37(7-8):829-837.
doi: 10.1002/joc.5041 |
[2] | Jia H J.Analysis of the ecological environment changes in land surface temperature, and NDVI based on MODIS remote sensing data[J]. Remote Sensing Information, 2014,2014(3):855-856. |
[3] |
Roşca C F, Harpa G V, Croitoru A E, et al.The impact of climatic and non-climatic factors on land surface temperature in southwestern Romania[J]. Theoretical & Applied Climatology, 2016,130(3-4):775-790.
doi: 10.1007/s00704-016-1923-6 |
[4] |
时忠杰,高吉喜,徐丽宏,等.内蒙古地区近25年植被对气温和降水变化的影响[J].生态环境学报,2011,20(11):1594-1601.
doi: 10.3969/j.issn.1674-5906.2011.11.002 |
[ Shi Z J,Gao J X,Xu L H, et al.Effect of vegetation on changes of temperature and precipitation in inner Mongolia, China[J]. Ecology and Environmental Sciences, 2011,20(11):1594-1601. ]
doi: 10.3969/j.issn.1674-5906.2011.11.002 |
|
[5] |
Estoque R C, Murayama Y, Myint S W.Effects of landscape composition and pattern on land surface temperature: An urban heat island study in the megacities of Southeast Asia[J]. Science of the Total Environment, 2017,577:349-359.
doi: 10.1016/j.scitotenv.2016.10.195 pmid: 27832866 |
[6] |
Deng Y, Wang S, Bai X, et al.Relationship among land surface temperature and LUCC, NDVI in typical karst area[J]. Scientific Reports, 2018,8(1):641-653.
doi: 10.1038/s41598-017-19088-x |
[7] |
刘建文,周玉科.站点尺度的青藏高原时序NDVI重构方法比较与应用[J].地理科学进展,2018,37(3):427-437.
doi: 10.18306/dlkxjz.2018.03.013 |
[ Liu J W, Zhou Y K.Comparison and application of NDVI time-series reconstruction methods at site scale on the Tibetan Plateau[J]. Progress in Geography, 2018,37(3):427-437. ]
doi: 10.18306/dlkxjz.2018.03.013 |
|
[8] |
Cai Z, Jönsson P, Jin H, et al.Performance of smoothing methods for reconstructing NDVI time-series and estimating vegetation phenology from MODIS data[J]. Remote Sensing, 2017,9(12):1271-1289.
doi: 10.3390/rs9121271 |
[9] |
臧琳,宋冬梅,单新建,等.基于被动微波与时空联合算法的云下像元LST重建[J].遥感技术与应用,2016,31(4):764-772.
doi: 10.11873/j.issn.1004-0323.2016.4.0764 |
[ Zang L, Song D M, Shan X J, et al.Reconstruction of LST under the cloud based on passive microwave remote sensing and spatio-temporal domain algorithm[J]. 2016,31(4):764-772. ]
doi: 10.11873/j.issn.1004-0323.2016.4.0764 |
|
[10] |
Romshoo S A, Rafiq M, Rashid I.Spatio-temporal variation of land surface temperature and temperature lapse rate over mountainous Kashmir Himalaya[J]. Journal of Mountain Science, 2018,15(3):563-576.
doi: 10.1007/s11629-017-4566-x |
[11] |
慈晖,张强.新疆NDVI时空特征及气候变化影响研究[J].地球信息科学学报,2017,19(5):662-671.
doi: 10.3969/j.issn.1560-8999.2017.05.010 |
[ Ci H, Zhang Q.Spatio-temporal patterns of NDVI variations and possible relations with climate changes in Xinjiang province[J]. Journal of Geo-information Science, 2017,19(5):662-671. ]
doi: 10.3969/j.issn.1560-8999.2017.05.010 |
|
[12] |
郭金停,胡远满,熊在平,等.中国东北多年冻土区植被生长季NDVI时空变化及其对气候变化的响应[J].应用生态学报,2017(8):2413-2422.
doi: 10.13287/j.1001-9332.201708.005 |
[ Guo J T, Hu Y M, Xiong Z P, et al.Spatiotemporal variations of growing-season NDVI and response to climate change in permafrost zone of northeast china[J]. Chinese Journal of Applied Ecology, 2017(8):2413-2422. ]
doi: 10.13287/j.1001-9332.201708.005 |
|
[13] | 屈创,殷嘉霖,张海筱.基于MODIS数据的中国热环境时空变化研究[J].干旱区资源与环境,2013,27(8):45-51. |
[ Qu C, Yin J L, Zhang H X.Spatio-temporal thermal environment in china based on MODIS data[J]. Journal of Arid Land Resources & Environment, 2013,27(8):45-51. ] | |
[14] |
Khan J, Wang P, Xie Y, et al.Mapping MODIS LST NDVI imagery for drought monitoring in Punjab Pakistan[J]. IEEE Access, 2018,99:19898-19911.
doi: 10.1109/ACCESS.2018.2821717 |
[15] |
Mühlbauer S, Costa A C, Caetano M.A spatiotemporal analysis of droughts and the influence of north Atlantic Oscillation in the Iberian Peninsula based on MODIS imagery[J]. Theoretical & Applied Climatology, 2016,124(3-4):703-721.
doi: 10.1007/s00704-015-1451-9 |
[16] |
Li P, Peng C, Wang M, et al. Dynamics of vegetation autumn phenology and its response to multiple environmental factors from 1982 to 2012 on Qinghai-Tibetan Plateau in China[J]. Science of the Total Environment, 2018,637-638:855-864.
doi: 10.1016/j.scitotenv.2018.05.031 pmid: 29763866 |
[17] |
Sun J, Qin X.Precipitation and temperature regulate the seasonal changes of NDVI across the Tibetan Plateau[J]. Environmental Earth Sciences, 2016,75(4):1-9.
doi: 10.1007/s12665-015-4873-x |
[18] |
李磊磊,范建容,张茜彧,等.西藏自治区植被与气候变化的关系[J].山地学报,2017,35(1):9-15.
doi: 10.16089/j.cnki.1008-2786.000190 |
[ Li L L, Fan J R, Zhang X Y, et al.Relationships between NDVI and climate changes in Tibet, China[J]. Mountain Research, 2017,35(1):9-15. ]
doi: 10.16089/j.cnki.1008-2786.000190 |
|
[19] |
周婷,张寅生,高海峰,等.青藏高原高寒草地植被指数变化与地表温度的相互关系[J].冰川冻土,2015,37(1):58-69.
doi: 10.7522/j.issn.1000-0240.2015.0006 |
[ Zhou T, Zhang Y S, Gao H F, et al.Relationship between vegetation index and ground surface temperature on the Tibetan Plateau alpine grassland[J]. Journal of Glaciology & Geocryology, 2015,37(1):58-69. ]
doi: 10.7522/j.issn.1000-0240.2015.0006 |
|
[20] |
王蕾,张树文,姚允龙.绿地景观对城市热环境的影响——以长春市建成区为例[J].地理研究,2014,33(11):2095-2104.
doi: 10.11821/dlyj201411009 |
[ Wang L, Zhang S W, Yao Y L.The impacts of green landscape on urban thermal environment: A case study in Changchun city[J]. Geographical Research, 2014,33(11):2095-2104. ]
doi: 10.11821/dlyj201411009 |
|
[21] |
沙莎,郭铌,李耀辉,等.温度植被干旱指数(TVDI)在陇东土壤水分监测中的适用性[J].中国沙漠,2017,37(1):132-139.
doi: 10.7522/j.issn.1000-694X.2015.00181 |
[ Sha S, Guo N, Li Y H, et al.Applicability of TVDI in monitoring drought in Longdong area of Gansu,China[J]. Journal of Desert Research, 2017,37(1):132-139. ]
doi: 10.7522/j.issn.1000-694X.2015.00181 |
|
[22] |
Cao X, Feng Y, Wang J.An improvement of the Ts-NDVI space drought monitoring method and its applications in the Mongolian Plateau with MODIS, 2000-2012[J]. Arabian Journal of Geosciences, 2016,9(6):433-447.
doi: 10.1007/s12517-016-2451-5 |
[23] |
Marzban F, Sodoudi S, Preusker R.The influence of land-cover type on the relationship between NDVI-LST and LST-Tair[J]. International Journal of Remote Sensing, 2018,39(5):1377-1398.
doi: 10.1080/01431161.2017.1402386 |
[24] |
李斌,王慧敏,秦明周,等. NDVI、NDMI与地表温度关系的对比研究[J].地理科学进展,2017,36(5):585-596.
doi: 10.18306/dlkxjz.2017.05.006 |
[ Li B, W H M, Qin M Z, et al. Comparative study on the correlations between NDVI, NDMI and LST[J]. Progress in Geography, 2017,36(5):585-596. ]
doi: 10.18306/dlkxjz.2017.05.006 |
|
[25] |
Park H S, Sohn B J.Recent trends in changes of vegetation over east Asia coupled with temperature and rainfall variations[J]. Journal of Geophysical Research Atmospheres, 2010,115(D14):14101-14113
doi: 10.1029/2009JD012752 |
[26] |
Kawabata A, Ichii K, Yamaguchi Y.Global monitoring of interannual changes in vegetation activities using NDVI and its relationships to temperature and precipitation[J]. International Journal of Remote Sensing, 2001,22(7):1377-1382.
doi: 10.1080/01431160119381 |
[27] | Peng S S, Piao S, Zeng Z, et al.Afforestation in China cools local land surface temperature[C]. Proceedings of the National Academy of Sciences, 2014,111(8):2915-2919. |
[28] | [ , 2016-06-29. ] |
[29] |
福建省森林资源管理总站.福建省第八次全国森林资源清查及森林资源状况调查报告[J].福建林业,2014(2):9-10.
doi: 10.3969/j.issn.1003-4382.2014.02.004 |
[ Fujian forest resource management general station, Report on the eighth national forest inventory and forest resources survey of Fujian province[J]. Forestry in Fujian, 2014(2):9-10. ]
doi: 10.3969/j.issn.1003-4382.2014.02.004 |
|
[30] |
Krishnan S R, Seelamantula C S.On the selection of optimum Savitzky-Golay filters[J]. IEEE Transactions on Signal Processing, 2013,61(2):380-391.
doi: 10.1109/TSP.2012.2225055 |
[31] |
边金虎,李爱农,宋孟强,等. MODIS植被指数时间序列Savitzky-Golay滤波算法重构[J].遥感学报,2010,14(4):725-741.
doi: 10.3724/SP.J.1011.2010.01138 |
[ Bian J H, Li A N, Song M Q, et al.Reconstruction of NDVI time-series datasets of MODIS based on Savitzky-Golay filter[J]. Journal of Remote Sensing, 2010.14(4):725-741. ]
doi: 10.3724/SP.J.1011.2010.01138 |
|
[32] |
顾祝军,曾志远,史学正,等.基于ETM+图像的植被覆盖度遥感估算模型[J].生态环境学报,2008,17(2):771-776.
doi: 10.3969/j.issn.1674-5906.2008.02.063 |
[ Gu Z J, Zeng Z Y, Shi X Z, et al, A model calculating vegetation fractional coverage from ETM+imagery[J]. Ecology and enVironmeflt. 2008,17(2):771-776. ]
doi: 10.3969/j.issn.1674-5906.2008.02.063 |
|
[33] |
Cai Y, Chen G, Wang Y, et al.Impacts of land vover and seasonal variation on maximum air temperature estimation using MODIS imagery[J]. Remote Sensing, 2017,9(3):233-247.
doi: 10.3390/rs9030233 |
[34] |
Zeng L, Wardlow B D, Tadesse T, et al.Estimation of daily air temperature based on MODIS land surface temperature products over the corn belt in the US[J]. Remote Sensing, 2015,7(1):951-970.
doi: 10.3390/rs70100951 |
[35] |
林金煌,陈文惠,祁新华,等.闽三角城市群生态系统格局演变及其驱动机制[J].生态学杂志,2018,37(1):203-210.
doi: 10.13292/j.1000-4890.201801.036 |
[ Lin J H, Chen W H, Qi X H, et al.Evolution pattern of ecosystem and its driving mechanism in urban agglomeration in Fujian delta region[J]. Chinese Journal of Ecology, 2018,37(1):203-210. ]
doi: 10.13292/j.1000-4890.201801.036 |
[1] | 魏婧卉, 吴升, 彭澎, 陆锋, 徐阳. 企业投融资视角下福建省数字产业发展时空演化[J]. 地球信息科学学报, 2023, 25(2): 354-367. |
[2] | 张颖, 汪侠, 闫艺涵, 史舒悦, 海少琪. 基于夜间灯光数据的西南地区县域旅游多维减贫效应时空变化研究[J]. 地球信息科学学报, 2022, 24(8): 1541-1557. |
[3] | 裴泽华, 葛淼, 李浩, 何进伟, 王聪霞. 基于随机森林模型的中国中老年人群HDL-C环境影响因素研究[J]. 地球信息科学学报, 2022, 24(7): 1286-1300. |
[4] | 王晓蕾, 石守海. 基于GEE的黄河流域植被时空变化及其地形效应研究[J]. 地球信息科学学报, 2022, 24(6): 1087-1098. |
[5] | 陈点点, 陈芸芝, 冯险峰, 武爽. 基于超参数优化CatBoost算法的河流悬浮物浓度遥感反演[J]. 地球信息科学学报, 2022, 24(4): 780-791. |
[6] | 周侯伯, 肖桂荣, 林炫歆, 尹玉环. 基于特征筛选与差分进化算法优化的滑坡危险性评估方法[J]. 地球信息科学学报, 2022, 24(12): 2373-2388. |
[7] | 郭长庆, 迟文峰, 匡文慧, 窦银银, 傅舒婧, 雷梅. 1990—2020年中国能源开采和加工场地多源数据综合制图与时空变化分析[J]. 地球信息科学学报, 2022, 24(1): 127-140. |
[8] | 王杏锋, 李代超, 吴升, 谢晓苇, 卢嘉奇. 水稻种植环境综合适宜性评价方法研究[J]. 地球信息科学学报, 2021, 23(8): 1484-1496. |
[9] | 熊皓丽, 周小成, 汪小钦, 崔雅君. 基于GEE云平台的福建省10 m分辨率茶园专题空间分布制图[J]. 地球信息科学学报, 2021, 23(7): 1325-1337. |
[10] | 王超, 常勇, 侯西勇, 刘玉斌. 基于土地利用格局变化的胶东半岛生境质量时空演变特征研究[J]. 地球信息科学学报, 2021, 23(10): 1809-1822. |
[11] | 葛咏, 刘梦晓, 胡姗, 任周鹏. 时空统计学在贫困研究中的应用及展望[J]. 地球信息科学学报, 2021, 23(1): 58-74. |
[12] | 赵青松, 兰安军, 范泽孟, 杨青. 贵州省不同地貌形态类型土壤侵蚀强度变化的定量分析[J]. 地球信息科学学报, 2020, 22(7): 1555-1566. |
[13] | 叶虎平, 廖小罕, 何贤强, 岳焕印. 斯里兰卡近海海洋生态环境变化遥感监测分析[J]. 地球信息科学学报, 2020, 22(7): 1463-1475. |
[14] | 高旺旺, 冯建中, 白林燕, 杨建华, 郭雷风, 李华林, 崔梦瑞. 海南岛气溶胶时空变化及来源追溯[J]. 地球信息科学学报, 2020, 22(7): 1532-1543. |
[15] | 董文钱, 董良, 向琳, 陶海军, 赵传虎, 曲寒冰. 基于贝叶斯时空模型的城管事件时空变化分析[J]. 地球信息科学学报, 2020, 22(5): 1073-1082. |
|