地球信息科学学报 ›› 2019, Vol. 21 ›› Issue (3): 337-345.doi: 10.12082/dqxxkx.2019.180380
收稿日期:
2018-08-16
修回日期:
2018-12-19
出版日期:
2019-03-15
发布日期:
2019-03-15
通讯作者:
邬群勇
E-mail:qywu@fzu.edu.cn
作者简介:
作者简介:邬群勇(1973-),男,山东诸城人,博士,研究员,研究方向为时空大数据分析、地理信息服务。E-mail:
基金资助:
Qunyong WU1,2,*(), Liangpan ZHANG1,2, Zufei WU1,2
Received:
2018-08-16
Revised:
2018-12-19
Online:
2019-03-15
Published:
2019-03-15
Contact:
Qunyong WU
E-mail:qywu@fzu.edu.cn
Supported by:
摘要:
出租车一直以来被看作公共交通的补充,但是以往研究多侧重于出租客流与公交客流的独立研究,对于二者的关联关系分析没有足够得到关注。预测出租车载客热点区域不仅能够实时的了解城市交通热点区域,还能够很好地指引出租车司机,帮助出租车司机快速寻客。出租车载客热点常发生在人流密集并且交通出行需求较高的区域,公交乘客IC卡数据能够实时的反映城市中的交通需求。因此,本文使用厦门岛出租车GPS轨迹数据与公共交通运输系统运营数据,利用核密度估计法和地理加权回归模型分析了早晚高峰时段出租车载客与公交上下车(OD)客流之间的时空分布关系。研究发现,出租乘客O点的核密度值在空间上存在分布不均衡性,聚集特征明显。在同一区域,公交乘客O点和公交乘客D点对出租乘客O点所产生的影响刚好相反;在不同区域,城市功能类型复杂的地区公交乘客O点对出租乘客O点产生负的影响,在城市功能类型单一的地区公交乘客O点对出租乘客O点产生正的影响,公交乘客D点则刚好相反。与普通线性回归模型相比,地理加权回归模型的拟合效果显著提高,早晚高峰拟合优度分别从0.13和0.11提升到了0.59和0.53。研究结果可为出租车载客数量的预测提供相关依据。
邬群勇, 张良盼, 吴祖飞. 顾及空间异质性的出租载客与公交客流回归分析[J]. 地球信息科学学报, 2019, 21(3): 337-345.DOI:10.12082/dqxxkx.2019.180380
Qunyong WU, Liangpan ZHANG, Zufei WU. Regression Analysis of Taxi Pick-up and Bus Passenger Flow Considering the Spatial Heterogeneity[J]. Journal of Geo-information Science, 2019, 21(3): 337-345.DOI:10.12082/dqxxkx.2019.180380
[1] |
Wang W, Attanucci J, Wilson N.Bus passenger origin-destination estimation and related analyses using automated data collection systems[J]. Journal of Public Transportation, 2011,14(4):131-150.
doi: 10.5038/2375-0901 |
[2] |
Munizaga M, Palma C.Estimation of a disaggregate multimodal public transport Origin-Destination matrix from passive smartcard data from Santiago, Chile[J]. Transportation Research Part C, 2012,24(9):9-18.
doi: 10.1016/j.trc.2012.01.007 |
[3] |
Munizaga M, Devillaine F, Navarrete C, et al.Validating travel behavior estimated from smart card data[J]. Transportation Research Part C, 2014,44(4):70-79.
doi: 10.1016/j.trc.2014.03.008 |
[4] | 邬群勇,苏克云,邹智杰.基于MapReduce的海量公交乘客OD并行推算方法[J].地球信息科学学报,2018,20(5):647-655. |
[ Wu Q Y, Su K Y, Zou Z J.A mapreduce-based method for parallel calculation of bus passengers origin and destination from massive transit data[J]. Journal of Geo-information Science, 2018,20(5):647-655. ] | |
[5] |
Ma X L, Wang Y H.Development of A data-driven platform for transit performance measures using smart card data and GPS data[J]. Journal of Transportation Engineering, 2014,140(12):04014063.
doi: 10.1061/(ASCE)TE.1943-5436.0000714 |
[6] |
Wang Y, Zhang D, Hu L, et al.A data-driven and optimal bus scheduling model with time-dependent traffic and demand[J]. IEEE Transactions on Intelligent Transportation Systems, 2017,18(9):2443-2452.
doi: 10.1109/TITS.2016.2644725 |
[7] | 邹智杰. 数据驱动的公交调度分析与优化研究——以厦门市为例[D].福州:福州大学,2018. |
[ Zou Z J.Data-driven bus scheduling analysis and optimization: A case study of Xia Men city[D]. Fu Zhou: Fuzhou University, 2018. ] | |
[8] |
Guo D, Zhu X, Jin H, et al.Discovering spatial patterns in Origin-Destination mobility data[J]. Transactions in GIS,2012,16(3):411-429.
doi: 10.1111/j.1467-9671.2012.01344.x |
[9] |
Shen Y, Zhao L, Fan J.Analysis and visualization for hot spot based route recommendation using short-dated taxi GPS traces[J]. Information, 2015,6(2):134-151.
doi: 10.3390/info6020134 |
[10] |
孙飞,张霞,唐炉亮,等.基于GPS轨迹大数据的优质客源时空分布研究[J].地球信息科学学报,2015,17(3):329-335.
doi: 10.3724/SP.J.1047.2015.00329 |
[ Sun F, Zhang X, Tang L, et al.Temporal and spatial distribution of high efficiency passengers based on GPS trajectory big data[J]. Journal of Geo-information Science, 2015,17(3):329-335. ]
doi: 10.3724/SP.J.1047.2015.00329 |
|
[11] | Qi G, Li X, Li S, et al.Measuring social functions of city regions from large-scale taxi behaviors[C]//Proceedings of the 9th IEEE International Conference on Pervasive Computing and Communications, WIP. Seattle, WA, USA, 2011:384-388. |
[12] |
Liu X, Kang C, Gong L, et al.Incorporating spatial interaction patterns in classifying and understanding urban land use[J]. International Journal of Geographical Information Science, 2016,30(2):334-350.
doi: 10.1080/13658816.2015.1086923 |
[13] |
吴健生,李博,黄秀兰.小城市居民出行行为时空动态及驱动机制研究[J].地球信息科学学报,2017,19(2):176-184.
doi: 10.3724/SP.J.1047.2017.00176 |
[ Wu J S, Li B, Huang X.Spatio-temporal dynamics and driving mechanisms of resident trip in small cities[J]. Journal of Geo-information Science, 2017,19(2):176-184. ]
doi: 10.3724/SP.J.1047.2017.00176 |
|
[14] |
Zhao Z, Gao J, Wang Y, et al.Exploring spatially variable relationships between NDVI and climatic factors in a transition zone using geographically weighted regression[J]. Theoretical & Applied Climatology, 2015,120(3-4):507-519.
doi: 10.1007/s00704-014-1188-x |
[15] | 姜磊,周海峰,柏玲.外商直接投资对空气污染影响的空间异质性分析——以中国 150个城市空气质量指数(AQI)为例[J].地理科学,2018,38(3):351-360. |
[ Jiang L, Zhou H, Bai L.Spatial heterogeneity analysis of impacts of foreign direct investment on air pollution: Empirical Evidence from 150 Cities in China Based on AQI. Scientia Geographica Sinica, 2018,38(3):351-360. ] | |
[16] |
韩雅,朱文博,李双成.基于GWR模型的中国NDVI与气候因子的相关分析.北京大学学报(自然科学版),2016,52(6):1125-1133.
doi: 10.13209/j.0479-8023.2015.130 |
[ Han Y, Zhu W, Li S.Modelling relationship between NDVI and climatic factors in China using geographically weighted regression. Acta Scientiarum Naturalium Universitatis Pekinensis, 2016,52(6):1125-1133. ]
doi: 10.13209/j.0479-8023.2015.130 |
|
[17] |
王海宾,侯瑞萍,郑冬梅,等.基于地理加权回归模型的亚热带地区乔木林生物量估算[J].农业机械学报,2018,49(6):184-190.
doi: 10.6041/j.issn.1000-1298.2018.06.021 |
[ Wang H, Hou R, Zheng D, et al.Biomass estimation of arbor forest in subtropical region based on geographically weighted regression model[J] Transactions of the Chinese Society for Agricultural Machinery, 2018,49(6):184-190. ]
doi: 10.6041/j.issn.1000-1298.2018.06.021 |
|
[18] |
Fotheringham A S, Brunsdon C, Charlton M.Geographically weighted regression: The analysis of spatially varying relationships[J]. American Journal of Agricultural Economics, 2004,86(2):554-556.
doi: 10.1111/j.0002-9092.2004.600_2.x |
[19] |
Wang Q, Ni J, Tenhunen J.Application of a geographically-weighted regression analysis to estimate net primary production of Chinese forest ecosystems[J]. Global Ecology and Biogeography, 2005,14:379-393.
doi: 10.1111/geb.2005.14.issue-4 |
[20] |
袁玉芸,瓦哈甫.哈力克,关靖云,等.基于GWR模型的于田绿洲土壤表层盐分空间分异及其影响因子[J].应用生态学报,2016,27(10):3273-3282.
doi: 10.13287/j.1001-9332.201610.022 |
[ Yuan Y, H W, Guan J, et al. Spatial differentiation and impact factors of Yu Tian Oasis's soil surface salt based on GWR model[J].Chinese Journal of Applied Ecology, 2016,27(10):3273-3282. ]
doi: 10.13287/j.1001-9332.201610.022 |
|
[21] | 汤国安,杨昕. ArcGIS地理信息系统空间分析实验教程[M].北京:科学出版社,2016. |
[ Tang G A, Yang X.ArcGIS geographic information system spatial analysis experiment tutorial[M]. Beijing: Science Press, 2016. ] | |
[22] |
Chu H J.Integration of fuzzy cluster analysis and kernel density estimation for tracking typhoon trajectories in the Taiwan region[J]. Expert Systems with Applications, 2012,39(10):9451-9457.
doi: 10.1016/j.eswa.2012.02.114 |
[1] | 韦原原, 江南, 陈云海, 李响, 杨振凯. 顾及时空对象空间相互作用的疫情风险评估建模与应用[J]. 地球信息科学学报, 2021, 23(2): 274-283. |
[2] | 葛咏, 刘梦晓, 胡姗, 任周鹏. 时空统计学在贫困研究中的应用及展望[J]. 地球信息科学学报, 2021, 23(1): 58-74. |
[3] | 赵鹏军, 万婕. 城市交通与土地利用一体化模型的核心算法进展及技术创新[J]. 地球信息科学学报, 2020, 22(4): 792-804. |
[4] | 刘艳霞, 冯莉, 田慧慧, 阳少奇. 中国气候舒适度时空分布特征分析[J]. 地球信息科学学报, 2020, 22(12): 2338-2347. |
[5] | 汪小英, 李小漫, 沈镭, 王宜龙. 长江经济带城乡一体化对能源效率的空间效应分析[J]. 地球信息科学学报, 2020, 22(11): 2188-2198. |
[6] | 周佳, 赵亚鹏, 岳天祥, 卢涛. 结合HASM和GWR方法的省级尺度近地表气温估算[J]. 地球信息科学学报, 2020, 22(10): 2098-2107. |
[7] | 杜震洪, 吴森森, 王中一, 汪愿愿, 张丰, 刘仁义. 基于地理神经网络加权回归的中国PM2.5浓度空间分布估算方法[J]. 地球信息科学学报, 2020, 22(1): 122-135. |
[8] | 鲍超,刘若文. 青藏高原城镇体系的时空演变[J]. 地球信息科学学报, 2019, 21(9): 1330-1340. |
[9] | 陈昭, 罗小波, 高阳华, 叶勤玉, 王书敏. 基于半变异函数的重庆市地表温度空间异质性建模及多尺度特征分析[J]. 地球信息科学学报, 2019, 21(7): 1051-1060. |
[10] | 阎世杰, 王欢, 焦珂伟. 京津冀地区植被时空动态及定量归因[J]. 地球信息科学学报, 2019, 21(5): 767-780. |
[11] | 樊智宇, 詹庆明, 刘慧民, 杨晨, 夏宇. 武汉市夏季城市热岛与不透水面增温强度时空分布[J]. 地球信息科学学报, 2019, 21(2): 226-235. |
[12] | 帅晨, 沙晋明, 林金煌, 季建万, 周正龙, 高尚. 不同下垫面遥感指数与地温关系的空间差异性研究[J]. 地球信息科学学报, 2018, 20(11): 1657-1666. |
[13] | 赵娜, 焦毅蒙. 基于TRMM降水数据的空间降尺度模拟[J]. 地球信息科学学报, 2018, 20(10): 1388-1395. |
[14] | 吴健生, 李博, 黄秀兰. 小城市居民出行行为时空动态及驱动机制研究[J]. 地球信息科学学报, 2017, 19(2): 176-184. |
[15] | 蒲强, 邹滨, 翟亮, 郭宇, 桑会勇, BILAL Muhammad. 集成多源遥感数据的PM2.5浓度空间分布制图[J]. 地球信息科学学报, 2016, 18(12): 1717-1724. |
|