地球信息科学学报 ›› 2019, Vol. 21 ›› Issue (4): 512-523.doi: 10.12082/dqxxkx.2019.180397
收稿日期:
2018-08-24
修回日期:
2018-12-24
出版日期:
2019-04-24
发布日期:
2019-04-24
作者简介:
作者简介:黄耀欢(1982-),男,安徽黄山人,副研究员,主要从事遥感与GIS应用研究。E-mail:
基金资助:
Yaohuan HUANG1,2(), Zhonghua LI1,2,*, Haitao ZHU3
Received:
2018-08-24
Revised:
2018-12-24
Online:
2019-04-24
Published:
2019-04-24
Contact:
Zhonghua LI
Supported by:
摘要:
作物胁迫是全球农业发展的一个重要制约因素,实现快速、大范围、实时的作物胁迫监测对于农业生产具有重要意义。传统的作物胁迫监测方式,如田间调查、理化检测和卫星遥感监测总是受到各种田间条件或大气条件的制约。随着无人机和各种轻量化传感器的快速发展,其凭借高频、迅捷等优势为各种作物胁迫监测提供了一套全新的解决方案。本文在介绍了目前主流的多种无人机和传感器的基础上,首先对目前无人机遥感用于作物监测的主要胁迫类型进行了梳理,然后重点阐述了基于光谱成像和热红外传感器进行作物胁迫无人机遥感监测的应用和技术方法,最后提出了作物胁迫无人机遥感监测尚需解决的关键问题,并展望了未来无人机遥感用于作物胁迫监测的前景。
黄耀欢, 李中华, 朱海涛. 作物胁迫无人机遥感监测研究评述[J]. 地球信息科学学报, 2019, 21(4): 512-523.DOI:10.12082/dqxxkx.2019.180397
Yaohuan HUANG, Zhonghua LI, Haitao ZHU. The Use of UAV Remote Sensing Technology to Identify Crop Stress: A Review[J]. Journal of Geo-information Science, 2019, 21(4): 512-523.DOI:10.12082/dqxxkx.2019.180397
表1
不同无人机平台属性
类型 | 载荷/kg | 飞行时间/min | 典型作业高度/m | 优点 | 缺点 |
---|---|---|---|---|---|
降落伞 | ≈ 1.5 | 10~30 | >100 | 操作简单、成本低 | 抗风能力弱、载荷受限、不适合快速移动 |
飞艇 | >3.0 | ≈ 600 | >100 | 载荷大,垂直起降、空中悬停、姿态平稳、安全系数高 | 抗风能力弱、使用成本高、效率低、飞行速度慢 |
多旋翼无人机 | 0.8~8.0 | 8~120 | 50~5000 | 自动导航、定点悬停、定点起飞、降落、多载荷、转场方便、对起降场地要求低 | 飞行时间短、遥控电子信号易受外界干扰 |
固定翼无人机 | 1.0~10 | 30~240 | 50~5000 | 自动导航、航时长、多载荷、转场方便、速度快、效率高、抗风能力强 | 不能定点悬停、过快的飞行速度可能会影响拍摄的图像质量、起降场地要求较高 |
垂直起降固定翼无人机 | 1.0~15 | 30~240 | 50~5000 | 垂直起降、定点悬停、多载荷、速度快、转场方便、对起降场地要求低 | 耗油大,气动布局复杂 |
表2
无人机作物胁迫监测常用传感器类型
传感器类型 | 作物胁迫应用 | 优点 | 缺点 | 参考文献 |
---|---|---|---|---|
数码相机 | 可见外部伤害、生长状况 | 成本低、直观便捷 | 仅限于可见光波段能够监测的特征 | [12]-[18] |
多光谱相机 | 氮素胁迫、水分胁迫、病虫害胁迫 | 获取便捷、成本低、周期短 | 仅限于有限的几个波段 | [12]-[14]、[19]-[21] |
高光谱相机 | 各种作物胁迫 | 可以监测的作物胁迫类型比较多 | 图像处理程序繁杂、价格高昂 | [22]-[25] |
热红外相机 | 气孔导度、水分胁迫 | 非接触测量作物温度,方便快捷 | 受环境影响较大、较小的温度差异难以被监测、难以消除土壤影响 | [26]-[30] |
LIDAR | 作物高度、生物量估测 | 丰富的点云信息 | 成本高、数据处理量大 | [31] |
SAR | 数字控制喷雾器或肥料撒播机的使用率、生物量估测、作物倒伏 | 可以探测静止目标、可以测距 | 灵敏度受噪声吸收、背景噪音等的限制,采样率低于基于激光的传感器 | [32] |
表3
作物胁迫探测常用植被指数
指数名称 | 指数公式 | 胁迫类型 | 参考文献编号 |
---|---|---|---|
归一化植被指数 | 病虫害、水分、杂草、氮素 | [13]、[41]、[52]-[55] | |
比值植被指数 | 病虫害 | [53] | |
过绿指数 | 杂草胁迫 | [13] [50] | |
归一化红绿差异指数 | 杂草胁迫 | [50] | |
叶绿素吸收反射转化指数和优化土壤调节指数的比值 | 水分胁迫 | [54] | |
红绿指数 | 病虫害胁迫 | [51] | |
红绿植被指数 | 病虫害胁迫 | [51] | |
过红指数 | 病虫害胁迫 | [17] | |
可见光大气阻抗植被指数 | 氮素胁迫 | [18] | |
蓝光标准化值 | 氮素胁迫 | [18] | |
比值光谱指数 | 氮素胁迫 | [25] | |
转化植被指数 | 病虫害胁迫 | [53] | |
光化学反射指数 | 水分胁迫 | [51] | |
标准化光化学指数 | 水分胁迫 | [51] | |
重归一化植被指数 | 水分胁迫 | [51] | |
修正叶绿素吸收指数 | 重金属胁迫 | [23] |
[1] | 杜广平. 植物与植物生理[M].北京:北京大学出版社,2007. |
[ Du G P.Plant and plant physiology[M]. Beijing: Peking University press, 2007. ] | |
[2] | Martinelli F, Scalenghe R, Davino S, et al.Advanced methods of plant disease detection. A review[J]. Agronomy for Sustainable Development, 2015,35(1):1-25. |
[3] | 廖小罕,周成虎,苏奋振,等.无人机遥感众创时代[J].地球信息科学学报,2016,18(11):1439-1447. |
[ Liao X H, Zhou C H, Su F Z et al. The mass innovation era of UAV remote sensing[J]. Journal of Geo-information Science, 2016,18(11):1439-1447. ] | |
[4] |
杨海军,黄耀欢.化工污染气体无人机遥感监测[J].地球信息科学学报,2015,17(10):1269-1274.
doi: 10.3724/SP.J.1047.2015.01269 |
[ Yang H J, Huang Y H.Evaluating atmospheric pollution of chemical plant based on unmanned aircraft vehicle(UAV)[J]. Journal of Geo-information Science, 2015,17(10):1269-1274. ]
doi: 10.3724/SP.J.1047.2015.01269 |
|
[5] |
金伟,葛宏立,杜华强,等.无人机遥感发展与应用概况[J].遥感信息,2009(1):88-92.
doi: 10.3969/j.issn.1000-3177.2009.01.017 |
[ Jin W, Ge H L, Du H Q, et al.A review on unmanned aerial vehicle remote sensing and its application[J]. Remote Sensing Information, 2009(1):88-92. ]
doi: 10.3969/j.issn.1000-3177.2009.01.017 |
|
[6] | 孙中宇,陈燕乔,杨龙,等.轻小型无人机低空遥感及其在生态学中的应用进展[J].应用生态学报,2017,28(2):528-536. |
[ Sun Z Y, Chen Y Q, Yang L, et al.Small unmanned aerial vehicles for low-altitude remote sensing and its application progress in ecolology[J]. Chinese [J].urnal of Applied Ecology, 2017,28(2):528-536. ] | |
[7] | 宋晓阳,黄耀欢,董东林,等.融合数字表面模型的无人机遥感影像城市土地利用分类[J].地球信息科学学报,2018,20(5):703-711. |
[ Song X Y, Huang Y H, Dong D L, et al.Urban land use classification from UAV remote sensing images based on digital surface model[J]. Journal of Geo-information Science, 2018,20(5):703-711.] | |
[8] | 郭琪,童庆祥.无人机在气象监测中的应用[J].广东气象,2016,38(6):64-66. |
[ Guo Q, Tong Q X.Application of uav in meteorological monitoring[J]. Journal of Guangdong Meteorology, 2016,38(6):64-66. ] | |
[9] | Alheit K V, Busemeyer L, Liu W, et al.Multiple-line cross QTL mapping for biomass yield and plant height in triticale[J]. Theoretical and Applied Genetics, 2013,127(1):251-260. |
[10] |
Zhang C, Kovacs J M.The application of small unmanned aerial systems for precision agriculture: a review[J]. Precision Agriculture, 2012,13(6):693-712.
doi: 10.1007/s11119-012-9274-5 |
[11] | Cui J, Wang F, Dong X, et al.Landmark extraction and state estimation for UAV operation in forest[C]// Control conference. IEEE, 2013:5210-5215. |
[12] | López-Granados F, Torres-Sánchez J, Serrano-Pérez A, et al.Early season weed mapping in sunflower using UAV technology: variability of herbicide treatment maps against weed thresholds[J]. Precision Agriculture, 2016,17(2):183-199. |
[13] |
López-Granados F, Torres-Sánchez J, Castro A I D, et al. Object-based early monitoring of a grass weed in a grass crop using high resolution UAV imagery[J]. Agronomy for Sustainable Development, 2016,36(4):67.
doi: 10.1007/s13593-016-0405-7 |
[14] | Roope Nasi, Niko Viljanen, Jere Kaivosoja, et al.Estimating biomass and nitrogen amount of barley and grass using UAV and aircraft based spectral and photogrammetric 3D features[J]. Remote Aens, 2018,10(7):1082. |
[15] | 李宗南,陈仲新,王利民,等.基于小型无人机遥感的玉米倒伏面积提取[J].农业工程学报,2014,30(19):207-213. |
[ Li Z N, Chen Z X, Wang L M, et al.Area extraction of maize lodging based on remote sensing by small unmanned aerial vehicle[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014,30(19):207-213. ] | |
[16] | 祝锦霞,陈祝炉,石媛媛,等.基于无人机和地面数字影像的水稻氮素营养诊断研究[J].浙江大学学报(农业与生命科学版),2010,36(1):78-83. |
[ Zhu J X, Chen Z L, Shi Y Y, et al.Diagnoses of rice nitrogen status based on spectral characteristics of leaf and canopy[J]. Journal of Zhe[J].ang University(Agricultural and Life Sciences), 2010,36(1):78-83.] | |
[17] | Castro A I D, Ehsani R, Ploetz R C, et al. Detection of laurel wilt disease in avocado using low altitude aerial imaging[J]. Plos One, 2015,10(4):e0124642. |
[18] | 李红军,李佳珍,雷玉平,等.无人机搭载数码相机航拍进行小麦、玉米氮素营养诊断研究[J].中国生态农业学报,2017(12):1832-1841. |
[ Li H J, Li J Z, Lei Y P, et al.Diagnosis of nitrogen nutrition of winter wheat and summer corn using images from digital camera equipped on unmanned aerial vehicle[J]. Chinese Journal of Eco-Agriculture, 2017(12):1832-1841. ] | |
[19] | Zamanallah M, Vergara O, Araus J L, et al.Unmanned aerial platform-based multi-spectral imaging for field phenotyping of maize.[J]. Plant Methods, 2015,11(1):35. |
[20] | Severtson D, Callow N, Flower K, et al.Unmanned aerial vehicle canopy reflectance data detects potassium deficiency and green peach aphid susceptibility in canola[J]. Precision Agriculture, 2016,17(6):659-677. |
[21] | Dash J P, Watt M S, Pearse G D, et al.Assessing very high resolution UAV imagery for monitoring forest health during a simulated disease outbreak[J]. International [J].urnal of Photogrammetry & Remote Sensing, 2017,131:1-14. |
[22] |
Vanegas F, Bratanov D, Powell K, et al.A novel methodology for iimproving plant pest surveillance in vineyards and crops using UAV-based hyperspectral and spatial data.[J]. Sensors, 2018,18(1):260.
doi: 10.3390/s18010260 |
[23] | 关丽,刘湘南,程承旗.土壤镉污染环境下水稻叶片叶绿素含量监测的高光谱遥感信息参数[J].光谱学与光谱分析,2009,29(10):2713-2716. |
[ Guan L, Liu X N, Cheng C Q.Research on hyperspectral information parameters of chlorophyll content of rice leaf in cd-polluted soil environment[J]. Spectroscopy and Spectral Analysis, 2009,29(10):2713-2716. ] | |
[24] | Wang H, Wang J, Wang Q, et al.Hyperspectral characteristics of winter wheat under freezing injury stress and LWC inversion model[C]// First International Conference on Agro-Geoinformatics. IEEE, 2012:1-6. |
[25] | 秦占飞,常庆瑞,谢宝妮,等.基于无人机高光谱影像的引黄灌区水稻叶片全氮含量估测[J].农业工程学报,2016,32(23):77-85. |
[ Qin Z F, Chang Q R, Xie B N, et al.Rice leaf nitrogen content estimation based on hyperspectral imagery of UAV in Yellow River diversion irrigation district[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016,32(23):77-85. ] | |
[26] |
Calderón R, Navas-Cortés J A, Lucena C, et al. High-resolution airborne hyperspectral and thermal imagery for early detection of Verticillium, wilt of olive using fluorescence, temperature and narrow-band spectral indices[J]. Remote Sensing of Environment, 2013,139(139):231-245.
doi: 10.1016/j.rse.2013.07.031 |
[27] |
Bellvert J, Zarco-Tejada P J, Girona J, et al. Mapping crop water stress index in a 'Pinot-noir' vineyard: comparing ground measurements with thermal remote sensing imagery from an unmanned aerial vehicle[J]. Precision Agriculture, 2014,15(4):361-376.
doi: 10.1007/s11119-013-9334-5 |
[28] | Matese A, Baraldi R, Berton A, et al.Estimation of water stress in grapevines using proximal and remote sensing methods[J]. Remote Sensing, 2018,10(1):114. |
[29] | Bellvert J, Zarco-Tejada P J, Gonzalez-Dugo V, et al. Scheduling vineyard irrigation based on mapping leaf water potential from airborne thermal images[C]// European Conference in Precision Agriculture. 2013:699-704. |
[30] |
Gonzalez-Dugo V, Zarco-Tejada P, Nicolás E, et al.Using high resolution UAV thermal imagery to assess the variability in the water status of five fruit tree species within a commercial orchard[J]. Precision Agriculture, 2013,14(6):660-678.
doi: 10.1007/s11119-013-9322-9 |
[31] | 杨凡. 基于无人机激光雷达和高光谱的冬小麦生物量反演研究[D].西安:西安科技大学,2017. |
[ Yang F.Estimation of winter wheat aboveground biomass with UAV LiDAR and hyperspectral data[D]. Xi'an: Xi'an University of Science andTechnology, 2017] | |
[32] | 杨浩,杨贵军,顾晓鹤,等.小麦倒伏的雷达极化特征及其遥感监测[J].农业工程学报,2014,30(7):1-8. |
[ Yang H, Yang G J, Gu X H, et al.Radar polarimetric response features and remote sensing monitoring of wheat lodging[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014,30(7):1-8. ] | |
[33] |
Peña J M, Torressánchez J, Serranopérez A, et al.Quantifying efficacy and limits of unmanned aerial vehicle (UAV) technology for weed seedling detection as affected by sensor resolution[J]. Sensors, 2015,15(3):5609-26.
doi: 10.3390/s150305609 pmid: 25756867 |
[34] | Strange R N, Scott P R.Plant disease: A threat to global food security[J]. Annual Review of Phytopathology, 2005,43(1):83-116. |
[35] | 张竞成,袁琳,王纪华,等.作物病虫害遥感监测研究进展[J].农业工程学报,2012,28(20):1-11. |
[ Zhang J C, Yuan L, Wang J H, et al.Research progress of crop diseases and pests monitoring based on remote sensing[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012,28(20):1-11. ] | |
[36] | 乔红波,师越,司海平,等.基于无人机数字图像与高光谱数据融合的小麦全蚀病等级的快速分类技术[J].植物保护,2015,41(6):157-162. |
[ Qiao H B, Shi Y, Si H P, et al.Fast multi-classification of wheat take-all levels based on the fusion of unmanned aerial vehicle digital images and spectral data[J]. Plant Protection, 2015,41(6):157-162. ] | |
[37] | 冷伟锋,王海光,胥岩,等.无人机遥感监测小麦条锈病初探[J].植物病理学报,2012,42(2):202-205. |
[ Leng W F, Wang H G, Xu Y, et al.Preliminary study on monitoring wheat stripe rust with using UAV[J]. Acta Phytopathologica Sinica, 2012,42(2):202-205. ] | |
[38] | Wang X, Zhao C, Guo N, et al.Determining the canopy water stress for spring wheat using canopy hyperspectral reflectance data in loess plateau semiarid regions[J]. Spectroscopy Letters, 2015,48(7):7. |
[39] | Fuchs M, Tanner C B.Infrared thermometry of vegetation[J]. Agronomy [J].urnal, 1962,58(6):597-601. |
[40] | Idso S B, Jackson R D, Jr P J P, et al. Normalizing the stress-degree-day parameter for environmental variability[J]. Agricultural Meteorology, 1981,24(1):45-55. |
[41] | Zhao T, Stark B, Chen Y Q, et al.Challenges in water stress quantification using small unmanned aerial system (sUAS): Lessons from a growing season of almond[C]// International Conference on Unmanned Aircraft Systems. IEEE, 2016:1366-1370. |
[42] | Chen S Y,Zhang S, Liu P, et al. Plant stress related protein GmSIK1 and encoding gene and use thereof: US, US 20120266325 A1[P]. 2012. |
[43] | 刘建刚,赵春江,杨贵军,等.无人机遥感解析田间作物表型信息研究进展[J].农业工程学报,2016,32(24):98-106. |
[ Liu J G, Zhao C J, Yang G J, et al.Review of field-based phenotyping by unmanned aerial vehicle remote sensing platform[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016,32(24):98-106. ] | |
[44] | Genderen V J L. Advances in environmental remote sensing: Sensors, algorithms and applications[J]. International [J].urnal of Digital Earth, 2011,4(5):446-447. |
[45] | 黄文江. 作物病害遥感监测机理与应用[M].北京:中国农业科学技术出版社,2009. |
[ Huang W J.Mechanism and application of remote sensing monitoring of crop diseases[M]. Beijing: China Agricultural Science and Technology Press, 2009. ] | |
[46] |
刘良云,黄木易,黄文江,等.利用多时相的高光谱航空图像监测冬小麦条锈病[J].遥感学报,2004,8(3):275-281.
doi: 10.11834/jrs.20040313 |
[ Liu L Y, Huang M Y, Huang W J, et al.Monitoring stripe rust disease of winter wheat using multi-temporal hyperspectral airborne data[J]. Journal of Remote Sensing, 2004,8(3):275-281.]
doi: 10.11834/jrs.20040313 |
|
[47] | Geipel J, Link J, Wirwahn J, et al.A programmable aerial multispectral camera system for in-season crop biomass and nitrogen content estimation[J]. Agriculture, 2016,6(1):4. |
[48] | Liu Y, Cheng T, Zhu Y, et al.Comparative analysis of vegetation indices, non-parametric and physical retrieval methods for monitoring nitrogen in wheat using UAV-based multispectral imagery[C]// Geoscience and Remote Sensing Symposium. IEEE, 2016:7362-7365. |
[49] |
Castro A I D, Jurado-Expósito M, Peña-Barragán J M, et al. Airborne multi-spectral imagery for mapping cruciferous weeds in cereal and legume crops[J]. Precision Agriculture, 2012,13(3):302-321.
doi: 10.1007/s11119-011-9247-0 |
[50] | Jorge T S, Francisca L G, Isabel D C A, et al. Configuration and specifications of an unmanned aerial vehicle (UAV) for early site specific weed management[J]. Plos One, 2013,8(3):e58210. |
[51] | Zarco-Tejada P J, González-Dugo V, Williams L E, et al. A PRI-based water stress index combining structural and chlorophyll effects: Assessment using diurnal narrow-band airborne imagery and the CWSI thermal index[J]. Remote Sensing of Environment, 2013,138(138):38-50. |
[52] | Nebiker S, Lack N, Abächerli M, et al. Light-weight multispectral UAV sensors and their capabilities for predicting grain yield and detecting plant diseases[J]. ISPRS-International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2016,XLI-B1:963-970. |
[53] | Zhao C, Huang M, Huang W, et al.Analysis of winter wheat stripe rust characteristic spectrum and establishing of inversion models[C]// IEEE International Geoscience & Remote Sensing Symposium. IEEE, 2004. |
[54] |
Baluja J, Diago M P, Balda P, et al.Assessment of vineyard water status variability by thermal and multispectral imagery using an unmanned aerial vehicle (UAV)[J]. Irrigation Science, 2012,30(6):511-522.
doi: 10.1007/s00271-012-0382-9 |
[55] | Lisa C, Matteo C, Monica G, et al.Unmanned aerial vehicle to estimate nitrogen status of turfgrasses[J]. Plos One, 2016,11(6):e0158268. |
[56] | Lee W S, Alchanatis V, Yang C, et al.Review: Sensing technologies for precision specialty crop production[J]. Computers & Electronics in Agriculture, 2010,74(1):2-33. |
[57] | Schmitz A, Kiewnick S, Schlang J, et al.Use of high resolution digital thermography to detect Heterodera schachtii infestation in sugar beets[J]. Commun Agric Appl Biol Sci, 2004,69(3):359-363. |
[58] | Lili Z, Duchesne J, Nicolas H, et al.Détection infrarouge thermique des maladies du blé d'hiver[J]. Eppo Bulletin, 1991,21(3):659-672. |
[59] | Nicolas H, Stafford J V.Use of remote sensing within the optical and thermal spectral ranges in order to detect Septoria tritici on winter wheat[C]// Precision agriculture '05. Papers presented at the 5th European Conference on Precision Agriculture, Uppsala, Sweden, 2005:81-89. |
[60] | Leinonen I, Jones H G.Combining thermal and visible imagery for estimating canopy temperature and identifying plant stress[J]. Journal of Experimental Botany, 2004,55(401):1423-1431. |
[61] | Dejonge K C, Taghvaeian S, Trout T J, et al.Comparison of canopy temperature-based water stress indices for maize[J]. Agricultural Water Management, 2015,156:51-62. |
[62] | Hardin P, Jensen R.Small-scale unmanned aerial vehicles in environmental remote sensing: Challenges and opportunities[J]. Mapping Sciences & Remote Sensing, 2011,48(1):99-111. |
[63] | Shi Y, Ji S P, Shao X W, et al.Framework of SAGI agriculture remote Sensing and its perspectives in supporting national food security[J]. Journal of Integrative Agriculture, 2014,13(7):1443-1450. |
[1] | 侯慧太, 蓝朝桢, 徐青. 基于卫星影像全局和局部深度学习特征检索的无人机绝对定位方法[J]. 地球信息科学学报, 2023, 25(5): 1064-1074. |
[2] | 蒯宇, 王彪, 吴艳兰, 陈搏涛, 陈兴迪, 薛维宝. 基于多尺度特征感知网络的城市植被无人机遥感分类[J]. 地球信息科学学报, 2022, 24(5): 962-980. |
[3] | 郝明, 林惠晶, 高彦彦. 基于改进主动轮廓模型的无人机影像矿区地裂缝提取[J]. 地球信息科学学报, 2022, 24(12): 2448-2457. |
[4] | 刘树超, 邵全琴, 杨帆, 郭兴健, 王东亮, 黄海波, 汪阳春, 刘纪远, 樊江文, 李愈哲. 黄河源区放牧家畜数量及空间分布无人机遥感调查[J]. 地球信息科学学报, 2021, 23(7): 1286-1295. |
[5] | 李芹, 刘旭林, 李荣昊, 冯朝晖, 李子锦, 赵红颖. 基于野外台站无人机组网遥感仿真航迹规划[J]. 地球信息科学学报, 2021, 23(5): 948-957. |
[6] | 朱婉雪, 孙志刚, 李彬彬, 杨婷, 刘振, 彭金榜, 朱康莹, 李仕冀, 娄金勇, 侯瑞星, 李静, 于武江, 王永利, 张峰, 刘向冶, 胡华浪, 欧阳竹. 基于无人机遥感的滨海盐碱地土壤空间异质性分析与作物光谱指数响应胁迫诊断[J]. 地球信息科学学报, 2021, 23(3): 536-549. |
[7] | 刘见礼, 廖小罕, 倪文俭, 王勇, 叶虎平, 岳焕印. 顾及单木三维形态的无人机立体影像单木识别算法[J]. 地球信息科学学报, 2021, 23(10): 1861-1872. |
[8] | 贾伟, 王静爱, 史培军, 马伟东. 青藏高原冰雪消融区岩漠动态变化遥感监测研究现状与展望[J]. 地球信息科学学报, 2021, 23(10): 1715-1727. |
[9] | 陈昂, 杨秀春, 徐斌, 金云翔, 张文博, 郭剑, 邢晓语, 杨东. 基于面向对象与深度学习的榆树疏林识别方法研究[J]. 地球信息科学学报, 2020, 22(9): 1897-1909. |
[10] | 王学文, 赵庆展, 韩峰, 马永建, 龙翔, 江萍. 机载多光谱影像语义分割模型在农田防护林提取中的应用[J]. 地球信息科学学报, 2020, 22(8): 1702-1713. |
[11] | 叶虎平, 廖小罕, 何贤强, 岳焕印. 斯里兰卡近海海洋生态环境变化遥感监测分析[J]. 地球信息科学学报, 2020, 22(7): 1463-1475. |
[12] | 蔡顺, 耿豪鹏, 郑炜珊, 潘保田. 基于傅里叶变换的谷间距特征信息提取及其影响因素研究[J]. 地球信息科学学报, 2020, 22(3): 399-409. |
[13] | 张志慧, 刘雯, 李笑含, 朱靖轩, 张洪涛, 杨东, 徐超昊, 徐宪立. 基于无人机航摄影像的喀斯特地区裸岩信息提取及景观格局分析[J]. 地球信息科学学报, 2020, 22(12): 2436-2444. |
[14] | 周玲, 李云梅, 赵焕, 房晟忠, 颜翔, 吕恒. 滇池湖滨带植被时空变化及其对滇池总磷浓度的影响[J]. 地球信息科学学报, 2020, 22(10): 1946-1958. |
[15] | 许佳峰, 李云梅, 徐杰, 雷少华, 毕顺, 周玲. 黑臭水体水面阴影提取的自适应阈值算法研究[J]. 地球信息科学学报, 2020, 22(10): 1959-1970. |
|