地球信息科学学报 ›› 2019, Vol. 21 ›› Issue (6): 799-813.doi: 10.12082/dqxxkx.2019.190014
• 地球信息科学理论与方法 • 下一篇
收稿日期:
2019-01-19
修回日期:
2019-03-04
出版日期:
2019-06-15
发布日期:
2019-06-15
作者简介:
作者简介:方颖(1995-),女,安徽宣城人,硕士生,研究方向为空间数据分析。E-mail:
基金资助:
Ying FANG1,2(), Lianfa LI1,2,*(
)
Received:
2019-01-19
Revised:
2019-03-04
Online:
2019-06-15
Published:
2019-06-15
Contact:
Lianfa LI
Supported by:
摘要:
气象变量常作为重要的影响因子出现在环境污染、疾病健康和农业等领域,而高分辨率的气象资料可作为众多研究的基础数据,对推进相关研究的发展意义重大。本文以中国大陆为研究区域,利用2015年824个气象站点的气温、相对湿度和风速3套数据,结合不同的解释变量组合,分别构建了各自的GAM和残差自编码器神经网络(简称残差网络)模型,以10倍交叉验证判断模型是否过拟合。研究结果表明:① GAM和残差网络方法都不存在过拟合问题,同GAM相比,残差网络显著提高了模型预测的精度(3个气象因素的交叉验证CV R2平均提高了0.21,CV RMSE平均降低了37%),其中相对湿度模型的提升幅度最大(CV R2:0.85 vs. 0.52,CV RMSE:7.53% vs. 13.59%);② 残差模型的结果较普通克里格插值结果和再分析资料更接近站点观测数据,表明残差网络可作为高分辨率气象数据研制的可靠方法。此外,研究还发现在相对湿度模型中加入臭氧浓度和气温、在风速模型中加入GLDAS风速再分析资料,可提升模型的性能。
方颖, 李连发. 基于机器学习的高精度高分辨率气象因子时空估计[J]. 地球信息科学学报, 2019, 21(6): 799-813.DOI:10.12082/dqxxkx.2019.190014
Ying FANG, Lianfa LI. Spatiotemporal Estimation of High-Accuracy and High-Resolution Meteorological Parameters based on Machine Learning[J]. Journal of Geo-information Science, 2019, 21(6): 799-813.DOI:10.12082/dqxxkx.2019.190014
表2
3个气象数据的基本信息
记录数/个 | 最小值 | 最大值 | 平均值 | 中值 | 标准差 | |
---|---|---|---|---|---|---|
气温/℃ | 294 357 | -37.70 | 38.20 | 12.97 | 14.90 | 11.45 |
高程/m | 1.80 | 4612.20 | 770.00 | 361.90 | 953.04 | |
相对湿度/% | 290 925 | 4.00 | 100.00 | 67.21 | 71.00 | 19.57 |
研究所得气温/℃ | -18.12 | 38.41 | 12.89 | 13.28 | 10.94 | |
GEOS-FP臭氧浓度/DU | 219.40 | 485.40 | 318.30 | 311.80 | 38.40 | |
最近邻相对湿度/) | 4.00 | 100.00 | 67.28 | 71.00 | 19.61 | |
风速/(m/s) | 255 209 | 0.00 | 23.20 | 2.06 | 1.80 | 1.27 |
GLDAS风速/(m/s) | 0.32 | 19.22 | 2.80 | 2.40 | 1.58 |
表4
气象数据各组协变量与模型结果
协变量组合 | GAM结果 | 残差自编码器结果 | ||||||
---|---|---|---|---|---|---|---|---|
R2 | RMSE | MAE | R2 | RMSE | MAE | |||
气温 | 经纬度+高程+DOY | 0.87 | 4.05 | 3.10 | 0.95 | 2.47 | 1.87 | |
经纬度+高程+DOY+月份 | 0.87 | 4.06 | 3.10 | 0.96 | 2.26 | 1.71 | ||
相对湿度 | 经纬度+高程+DOY | 0.51 | 13.77 | 10.96 | 0.72 | 10.37 | 8.05 | |
经纬度+高程+DOY+最近邻值 | 0.80 | 8.71 | 6.49 | 0.86 | 7.41 | 5.58 | ||
经纬度+高程+DOY+气温 | 0.51 | 13.67 | 10.87 | 0.75 | 9.78 | 7.58 | ||
经纬度+高程+DOY+臭氧浓度 | 0.52 | 13.59 | 10.79 | 0.75 | 9.74 | 7.55 | ||
经纬度+高程+DOY+气温+臭氧浓度 | 0.52 | 13.64 | 10.81 | 0.77 | 9.47 | 7.29 | ||
经纬度+高程+DOY+气温+臭氧浓度+月份 | 0.52 | 13.61 | 10.80 | 0.85 | 7.66 | 5.86 | ||
风速 | 经纬度+高程+DOY | 0.22 | 11.27 | 7.81 | 0.44 | 9.55 | 6.60 | |
经纬度+高程+DOY+GEOS-FP风速 | 0.46 | 9.35 | 6.54 | 0.65 | 7.59 | 5.21 | ||
经纬度+高程+DOY+GEOS-FP风速+月份 | 0.45 | 9.39 | 6.55 | 0.66 | 7.49 | 5.18 |
[1] | Shi Y, Ho H C, Xu Y, et al.Improving satellite aerosol optical Depth-PM2.5 correlations using land use regression with microscale geographic predictors in a high-density urban context[J]. Atmospheric Environment, 2018,190:23-34. |
[2] | Gao M, Yin L, Ning J.Artificial neural network model for ozone concentration estimation and Monte Carlo analysis[J]. Atmospheric Environment, 2018,184:129-139. |
[3] | Li L, Lurmann F, Habre R, et al.Constrained mixed-effect models with ensemble learning for prediction of nitrogen oxides concentrations at high spatiotemporal resolution[J]. Environmental Science & Technology, 2017,51(17):9920-9929. |
[4] |
王小燕,赵晓宇,陈恢富,等.江汉平原小麦孕穗期空气相对湿度升高的产量效应[J].中国农业科学,2014,47(19):3769-3779.
doi: 10.3864/j.issn.0578-1752.2014.19.005 |
[ Wang X Y, Zhao X Y, Chen H F, et al.Characteristics of air moisture and the effects of high air moisture at booting stage on grain yield of wheat in Jianghan plain[J]. Scientia Agricultura Sinica, 2014,47(19):3769-3779. ]
doi: 10.3864/j.issn.0578-1752.2014.19.005 |
|
[5] | 孙丽娜,孙瑞红,仇贵生,等.相对湿度对苹小卷叶蛾实验种群的影响[J].应用生态学报, 2014,25(12):3587-3592. |
[ Sun L N, Sun R H, Qiu G S, et al.Influence of relative humidity on the Adoxophyes orana experimental population[J]. Chinese Journal of Applied Ecology, 2014,25(12):3587-3592. ] | |
[6] |
赵琴,潘静,曹兵,等.气温升高与干旱胁迫对宁夏枸杞光合作用的影响[J].生态学报,2015,35(18):6016-6022.
doi: 10.5846/stxb201401090073 |
[ Zhao Q, Pan J, Cao B, et al. Effects of elevated temperature and drought stress on photosynthesis of Lycium barbarum[J]. Acta Ecologica Sinica, 2015,35(18):6016-6022. ]
doi: 10.5846/stxb201401090073 |
|
[7] | Bo Y C, Song C, Wang J, et al.Using an autologistic regression model to identify spatial risk factors and spatial risk patterns of hand, foot and mouth disease (HFMD) in Mainland China[J]. BMC Public Health, 2014,14(1):358. |
[8] | 谢今范,刘玉英,王玉昆,等.东北地区风能资源空间分布特征与模拟[J].地理科学,2014,34(12):1497-1503. |
[ Xie J F, Liu Y Y, Wang Y K, et al.Spatial distribution characteristics of wind resource and its simulation in northeast China[J]. Scientia Geographica Scinica, 2014,34(12):1497-1503. ] | |
[9] |
任永建,刘敏,袁业畅,等.湖北省风能资源的高分辨率数值模拟试验[J].自然资源学报,2012,27(6):1035-1043.
doi: 10.11849/zrzyxb.2012.06.013 |
[ Ren Y J, Liu M, Yuan Y C, et al.The high resolution numerical simulation of wind energy resource in Hubei Province[J]. Journal of Natural Resources, 2012,26(6):1035-1043. ]
doi: 10.11849/zrzyxb.2012.06.013 |
|
[10] | 于洋,卫伟,陈利顶,等.黄土高原年均降水量空间插值及其方法比较[J].应用生态学报,2015,26(4):999-1006. |
[ Yu Y, Wei W, Chen L D, et al. Comparison on the methods for spatial interpolation of the annual average precipitation in the Loess Plateau region[J]. Chinese Journal of Applied Ecology, 2015,26(4):999-1006. ] | |
[11] | 王国泰,张守平,杨清伟,等.基于空间插值方法的重庆降水信息展布[J].南水北调与水利科技,2018,16(3):18-23. |
[ Wang G T, Zhang S P, Yang Q W et al. Precipitation information distribution in Chongqing based on spatial interpolation method[J]. South-to-North Water Transfers and Water Science & Technology, 2018,16(3):18-23. ] | |
[12] | 林忠辉,莫兴国,李宏轩,等.中国陆地区域气象要素的空间插值[J].地理学报,2002,57(1):47-56. |
[ Lin Z H, Mo X G, Li H X, et al.Comparison of three spatial interpolation methods for climate variables in China[J]. Acta Geographica Sinica, 2002,57(1):47-56. ] | |
[13] | 张仁平,张云玲,郭靖,等.新疆地区降水分布的空间插值方法比较[J].草业科学,2018,35(3):521-529. |
[ Zhang R P, Zhang Y L, Guo J, et al.Comparison of spatial interpolation methods for precipitation distribution in Xinjiang region[J]. Pratacultural Science, 2018,35(3):521-529. ] | |
[14] | 姜晓剑,刘小军,黄芬,等.逐日气象要素空间插值方法的比较[J].应用生态学报,2010,21(3):624-630. |
[ Jiang X J, Liu X J, Huang F, et al.Comparison of spatial interpolation methods for daily meteorological elements[J]. China Journal of Applied Ecology, 2010,21(3):624-630. ] | |
[15] |
陈思宁,郭军.不同空间插值方法在区域气温序列中的应用评估:以东北地区为例[J].中国农业气象,2015,36(2):234-241.
doi: 10.3969/j.issn.1000-6362.2015.02.015 |
[ Chen S N, Guo J.Evaluation of different spatial interpolation methods in regional temperature sequence: A case study in northeast China[J]. China Journal of Agrometeorology, 2015,36(2):234-241. ]
doi: 10.3969/j.issn.1000-6362.2015.02.015 |
|
[16] |
彭彬,周艳莲,高苹,等.气温插值中不同空间插值方法的适用性分析——以江苏省为例[J].地球信息科学学报,2011,13(4):539-548.
doi: 10.3724/SP.J.1047.2011.00539 |
[ Peng B, Zhou Y L, Gao P, et al.Suitability assessment of different interpolation methods in the gridding process of station collected air temperature: A case study in Jiangsu Province, China[J]. Journal of Geo-information Science, 2011,13(4):539-548. ]
doi: 10.3724/SP.J.1047.2011.00539 |
|
[17] | 李军龙,张剑,张丛,等.气象要素空间插值方法的比较分析[J].草业科学,2006(8):6-11. |
[ Li J L, Zhang J, Zhang C, et al.Analyze and compare the spatial interpolation methods for climate factor[J]. Pratacultural Science, 2006(8):6-11. ] | |
[18] | 李伟,李庆祥,江志红.用Kriging方法对中国历史气温数据插值可行性讨论[J].南京气象学院学报,2007(2):246-252. |
[ Li W, Li Q X, Jiang Z H.Discussion on feasibility of gridding the historic temperature data in China with kriging method[J]. Journal of Nanjing Institute of Meteorology, 2007(2):246-252. ] | |
[19] | Xu C D, Wang J F, Li Q.A new method for temperature spatial interpolation based on sparse historical stations[J]. Journal of Climate, 2017,31(5):1757-1770. |
[20] | Wang J F, Xu C, Hu M, et al.Global land surface air temperature dynamics since 1880[J]. International Journal of Climatology, 2018,381:E466-E474. |
[21] | Wang J F, Xu C D, Hu M G, et al.A new estimate of the China temperature anomaly series and uncertainty assessment in 1900-2006[J]. Journal of Geophysical Research: Atmospheres, 2014,119(1):1-9. |
[22] | 解恒燕,张深远,侯善策,等.降水量空间插值方法在小样本区域的比较研究[J].水土保持研究,2018,25(3):117-121. |
[ Xie H Y, Zhang S Y, Hou S C, et al.Comparison research on rainfall interpolation methods for small sample areas[J]. Research of Soil and Water Conservation, 2018,25(3):1-9. ] | |
[23] | 马秀霞,黄领梅,沈冰.陕西省月平均气温空间插值方法研究[J].水资源与水工程学报,2017,28(5):100-105. |
[ Ma X X, Huang L M, Shen B Study on spatial interpolation method of monthly mean temperature in Shanxi Province[J]. Journal of Water Resource & Water Engineering, 2017,28(5):100-105. ] | |
[24] | 沈红,刘文兆,张勋昌.黄土高原气象要素栅格化方法的研究[J].西北农林科技大学学报(自然科学版),2010,38(4):99-106. |
[ Shen H, Liu W Z, Zhang X C.Studying the methods for rasterizing meteorological variables in the Loess Plateau[J]. Journal of Northwest A&F University(Nat. Sci. Ed.), 2010,38(4):99-106. ] | |
[25] |
李月臣,何志明,刘春霞.基于站点观测数据的气温空间化方法评述[J].地理科学进展,2014,33(8):1019-1028.
doi: 10.11820/dlkxjz.2014.08.002 |
[ Li Y C, He Z M, Liu C X.Review on spatial interpolation methods of temperature data from meteorological stations[J]. Progress in Geography, 2014,33(8):1019-1028. ]
doi: 10.11820/dlkxjz.2014.08.002 |
|
[26] |
周婷婷,陈文惠.基于MODIS数据和气象观测数据的气温空间插值方法比较[J].地理科学进展,2011,30(9):1143-1151.
doi: 10.11820/dlkxjz.2011.09.009 |
[ Zhou T T, Chen W H.Comparation of the temperature spatial interpolation methods based on MODIS data and meteorological observation data[J]. Progress in Geography, 2011,30(9):1143-1151. ]
doi: 10.11820/dlkxjz.2011.09.009 |
|
[27] | 石志华,刘梦云,常庆瑞,等.基于优化参数的陕西省气温、降水栅格化方法分析[J].自然资源学报,2015,30(7):1141-1152. |
[ Shi Z H, Liu M Y, Chang Q R, et al.Comparison of temperature and precipitation rasterization methods based on optimized parameters in Shanxi Province[J]. Journal of Natural Resources, 2015,30(7):1141-1152. ] | |
[28] |
姜燕敏,吴昊旻. 20个CMIP5模式对中亚地区年平均气温模拟能力评估[J].气候变化研究进展,2013,9(2):110-116.
doi: 10.3969/j.issn.1673-1719.2013.02.005 |
[ Jiang Y M, Wu H M.Simulation capabilities of 20 CMIP5 methods for annual mean air temperatures in central Asia[J]. Progress Inquisitions de Mutatione Climatis, 2013,9(2):110-116. ]
doi: 10.3969/j.issn.1673-1719.2013.02.005 |
|
[29] | Lazzus J A.Estimation of surface soil temperature based on neural network modeling[J]. Italian Journal of Agrometeorology-rivista Italiana Di Agrometeorologia, 2014,19(2):5-12. |
[30] | Szymanowski M, Kryza M, Spallek W.Regression-based air temperature spatial prediction models: An example from Poland[J]. Meteorologische Zeitschrift, 2013,22(5):577-585. |
[31] | Hjort J, Suomi J, Kayhko J.Spatial prediction of urban-rural temperatures using statistical methods[J]. Theoretical and Applied Climatology, 2011,106(1-2):139-152. |
[32] | Kou X, Jiang L, Bo Y, et al.Estimation of land surface temperature through blending MODIS and AMSR-E data with the Bayesian Maximum Entropy method[J]. Remote Sensing, 2016,8(2):105. |
[33] | 蒋冲,王飞,刘焱序,等.秦岭南北风速时空变化及突变特征分析[J].地理科学,2013,33(2):244-250. |
[ Jiang C, Wang F, Liu Y X, et al.Spatial-temporal variation and mutation of wind speed in the northern and southern regions of the Qinling Mountains[J]. Scientia Geographica Sinica, 2013,33(2):244-250. ] | |
[34] | 赵伟,高博,刘明,等.气象因素对香港地区臭氧污染的影响[J].环境科学,2019,40(1):55-66. |
[ Zhao W, Gao B, L Q, et al. Impact of meteorological factors on the ozone pollution in Hong Kong[J]. Environmental Science, 2019,40(1):55-66. ] | |
[35] | Li L, Y F, J W, et al. Autoencoder based residual deep networks for robust regression prediction and spatiotemporal estimation[J].2018, preprint arXiv:1812.11262. |
[36] | Wang J F, Zhang T, Fu B.A measure of spatial stratified heterogeneity[J]. Ecological Indicators, 2016,67:250-256. |
[37] | 王劲峰,徐成东.地理探测器:原理与展望[J].地理学报,2017,72(1):116-134. |
[ Wang J F, Xu C D.Geodector: principle and prospective[J]. Acta Geographica Sinica, 2017,72(1):116-134. ] | |
[38] | Wang J F, Li X H, Christakos G, et al.Geographical detectors-based health risk assessment and its application in the neural tube defects study of the Heshun region, China[J]. International Journal of Geographical Information Science, 2010,24(1):107-127. |
[1] | 戚梦, 陈楠, 林偲蔚, 周千千. 引入集水区复杂网络的中国地貌识别研究[J]. 地球信息科学学报, 2023, 25(5): 909-923. |
[2] | 李琳叶, 李艳艳, 陈传法, 刘妍, 刘雅婷, 刘盼盼. 林区数字高程模型修正方法:顾及高程自相关的后向传播神经网络模型[J]. 地球信息科学学报, 2023, 25(5): 935-952. |
[3] | 刘潇, 刘智, 林雨准, 王淑香, 左溪冰. 面向遥感影像场景分类的类中心知识蒸馏方法[J]. 地球信息科学学报, 2023, 25(5): 1050-1063. |
[4] | 侯慧太, 蓝朝桢, 徐青. 基于卫星影像全局和局部深度学习特征检索的无人机绝对定位方法[J]. 地球信息科学学报, 2023, 25(5): 1064-1074. |
[5] | 张金雷, 陈奕洁, Panchamy Krishnakumari, 金广垠, 王骋程, 杨立兴. 基于注意力机制的城市轨道交通网络级多步短时客流时空综合预测模型[J]. 地球信息科学学报, 2023, 25(4): 698-713. |
[6] | 柯日宏, 吴升, 柯玮文. 一种识别共享单车潮汐点的时空模型和基于KNN-LightGBM的租还需求预测方法[J]. 地球信息科学学报, 2023, 25(4): 741-753. |
[7] | 李心雨, 闫浩文, 王卓, 王炳瑄. 街景图像与机器学习相结合的道路环境安全感知评价与影响因素分析[J]. 地球信息科学学报, 2023, 25(4): 852-865. |
[8] | 衡雪彪, 许捍卫, 唐璐, 汤恒, 许怡蕾. 基于改进全卷积神经网络模型的土地覆盖分类方法研究[J]. 地球信息科学学报, 2023, 25(3): 495-509. |
[9] | 于方圆, 曹家玮, 李发源, 李思进. 顾及对象特征的地面式光伏电站提取及减碳效益评估[J]. 地球信息科学学报, 2023, 25(3): 529-545. |
[10] | 高建文, 管海燕, 彭代锋, 许正森, 康健, 季雅婷, 翟若雪. 基于局部-全局语义特征增强的遥感影像变化检测网络模型[J]. 地球信息科学学报, 2023, 25(3): 625-637. |
[11] | 黄帅元, 董有福, 李海鹏. 黄土高原区SRTM1 DEM高程误差校正模型构建及对比分析[J]. 地球信息科学学报, 2023, 25(3): 669-681. |
[12] | 江宝得, 许少芬, 王进, 王淼. 基于条件生成对抗网络的电子地图可视水印去除方法[J]. 地球信息科学学报, 2023, 25(2): 288-297. |
[13] | 谢谦, 陆明, 谢春山. 基于LBS和深度学习的旅游景区客流量的高时频预测[J]. 地球信息科学学报, 2023, 25(2): 298-310. |
[14] | 黄昕, 毛政元. 基于时空多图卷积网络的网约车乘客需求预测[J]. 地球信息科学学报, 2023, 25(2): 311-323. |
[15] | 刘洋, 康健, 管海燕, 汪汉云. 基于双注意力残差网络的高分遥感影像道路提取模型[J]. 地球信息科学学报, 2023, 25(2): 396-408. |
|