地球信息科学学报 ›› 2019, Vol. 21 ›› Issue (12): 1965-1976.doi: 10.12082/dqxxkx.2019.190115
雷志斌1,2,3, 孟庆岩2,3,*(), 田淑芳1, 张琳琳2,3, 马建威4
收稿日期:
2019-03-13
修回日期:
2019-08-19
出版日期:
2019-12-25
发布日期:
2019-12-25
作者简介:
雷志斌(1995-),男,云南昭通人,硕士生,研究方向为定量遥感及农业遥感。E-mail: 1529418402@qq.com
基金资助:
LEI Zhibin1,2,3, MENG Qingyan2,3,*(), TIAN Shufang1, ZHANG Linlin2,3, MA Jianwei4
Received:
2019-03-13
Revised:
2019-08-19
Online:
2019-12-25
Published:
2019-12-25
Contact:
MENG Qingyan
Supported by:
摘要:
基于我国首颗全极化雷达卫星高分三号(GF-3)和Landsat8数据,研究浓密植被覆盖地表土壤水分反演方法。为了提高浓密植被覆盖地表土壤水分反演精度,首先利用PROSAIL模型、实测植被参数及Landsat8光学数据分析了8种植被指数与植被冠层含水量的相关性,从中优选出归一化差异水指数(NDWI5)用于反演植被冠层含水量,并通过分析植被含水量和植被冠层含水量的关系,构建植被含水量模型;然后结合植被含水量反演模型和简化MIMICS模型校正了植被对雷达后向散射系数的影响,最后基于AIEM建立裸土后向散射系数模拟数据集,发展一种主动微波和光学数据协同反演浓密植被覆盖地表土壤水分模型,并以山东省禹城市为研究区,实现了玉米覆盖下HH、VV和HH+VV 3种模式土壤水分反演。实验结果表明: ① NDWI5为最佳植被指数,对于去除植被影响有较好效果;② 基于此方法,利用GF-3和Landsat8卫星数据反演得到的土壤水分具有较高的精度;③ 相比HH和VV两种极化模式,HH+VV双通道模式对土壤水分反演结果更好,决定系数(R2)为0.4037,均方根误差(RMSE)为0.0667 m 3m -3。
雷志斌, 孟庆岩, 田淑芳, 张琳琳, 马建威. 基于GF-3和Landsat 8遥感数据的土壤水分反演研究[J]. 地球信息科学学报, 2019, 21(12): 1965-1976.DOI:10.12082/dqxxkx.2019.190115
LEI Zhibin, MENG Qingyan, TIAN Shufang, ZHANG Linlin, MA Jianwei. Soil Moisture Retrieval Study based on GF-3 and Landsat8 Remote Sensing Data[J]. Journal of Geo-information Science, 2019, 21(12): 1965-1976.DOI:10.12082/dqxxkx.2019.190115
表5
PROSAIL模型植被指数拟合精度
植被指数 | 拟合公式 | R2 | RMSE/(kg/m2) |
---|---|---|---|
SR | y=-0.1495x+5.295 | 0.2143 | 0.5711 |
MSI | y=3.257e-7.556x | 0.7324 | 0.3323 |
NDWI5 | y=0.0326e4.685x | 0.7617 | 0.3135 |
NDWI7 | y=0.1905e4.522x | 0.3098 | 0. 5526 |
NDVI | y=-45x+43.06 | 0.1843 | 0.5832 |
NMDI | y=0.0225e5.098x | 0.7377 | 0.3289 |
SRWI/NDWI | y=-0.1405x+2.105 | 0.0461 | 0.6273 |
EVI | y=-6.375x+7.013 | 0.1989 | 0.5749 |
[1] |
贾艳昌, 谢谟文, 姜红涛 , 等. 全球36 km格网土壤水分逐日估算[J]. 地球信息科学学报, 2017,19(6):854-860.
doi: 10.3724/SP.J.1047.2017.00854 |
[ Jia Y C, Xie M W, Jiang H T , et al. Daily estimate of global 36 km grid soil moisture[J]. Journal of Geo-information Science, 2017,19(6):854-860. ]
doi: 10.3724/SP.J.1047.2017.00854 |
|
[2] |
王安琪, 施建成, 阿多 , 等. 光学信息分解被动微波土壤湿度方法[J]. 地球信息科学学报, 2012,14(5):652-657.
doi: 10.3724/SP.J.1047.2012.00652 |
[ Wang A Q, Shi J C, A D , et al. The method of decomposing the passive microwave soil moisture using optical information[J]. Journal of Geo-information Science, 2012,14(5):652-657. ]
doi: 10.3724/SP.J.1047.2012.00652 |
|
[3] |
Attema E P W, Ulaby F T . Vegetation modeled as a water cloud[J]. Radio Science, 1978,13(2):357-364.
doi: 10.1002/ece3.4104 pmid: 30151146 |
[4] |
Ulaby F T, Sarabandi K, Mcdonald K , et al. Michigan microwave canopy scattering model[J]. International Journal of Remote Sensing, 1990,11(7):1223-1253.
doi: 10.1080/01431169008955090 |
[5] |
Oh Y . Radar remote sensing of soil moisture and surface roughness for vegetation surface[J]. Korean Journal of Remote Sensing, 2008,24(5):427-436.
doi: 10.3390/s19030589 pmid: 30704120 |
[6] |
Notarnicola C, Angiulli M, Posa F , et al. Use of radar and optical remotely sensed data for soil moisture retrieval over vegetation areas[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006,44(4):925-935.
doi: 10.1109/TGRS.2006.872287 |
[7] |
Saradjian M R, Hosseiini M . Soil moisture estimation by using multi-polarization SAR image[J]. Advanced in Space Research, 2011,48(2):278-286.
doi: 10.1016/j.asr.2011.03.029 |
[8] |
Imen G, Magagi R, Berg A A , et al. Soil moisture retrieval over agricultural fields from multi-polarized and multi-angular radarsat-2 SAR data[J]. Remote Sensing of Environment, 2011,115(1):33-43.
doi: 10.1016/j.rse.2010.07.011 |
[9] | 余凡, 赵英时 . ASAR和TM数据协同反演植被覆盖地表土壤水分的新方法[J]. 中国科学:地球科学, 2011,41(4):532-540. |
[ Yu F, Zhao Y S . A new semi-empirical model for soil moisture content retrieval by ASAR and TM data in vegetation covered areas[J]. Scientia Sinica Terrae, 2011,41(4):532-540. ] | |
[10] |
Zhou P, Ding J L, Wang F , et al. Retrieval methods of soil water content in vegetation covering areas based on multi-source remote sensing data[J]. Journal of Remote Sensing, 2010,2(5):369-372.
doi: 10.1080/01431168108948371 |
[11] |
孔金玲, 李菁菁, 甄珮珮 , 等. 微波与光学遥感协同反演旱区地表土壤水分研究[J]. 地球信息科学学报, 2016,18(6):857-863.
doi: 10.3724/SP.J.1047.2016.00857 |
[ Kong J L, Li J J, Zhen P P , et al. Inversion of soil moisture in arid area based on microwave and optical remote sensing data[J]. Journal of Geo-information Science, 2016,18(6):857-863. ]
doi: 10.3724/SP.J.1047.2016.00857 |
|
[12] | 中国资源卫星应用中心[EB/OL].( http://www.cresda.com/CN/. |
[China centre for resources satellite data and application[EB/OL]. ( http://www.cresda.com/CN/).] | |
[13] | 美国地质调查局[EB/OL].( https://earthexplorer.usgs.gov/). |
[ United states geological survey[EB/OL].( https://earthexplorer.usgs.gov/). ] | |
[14] |
陈鲁皖, 韩玲, 王文娟 , 等. 地表组合粗糙度不确定性引起的SAR反演土壤水分的不确定性分析[J]. 地球信息科学学报, 2018,20(1):108-118.
doi: 10.12082/dqxxkx.2018.170319 |
[ Chen L W, Han L, Wang W J , et al. Uncertainty analysis of SAR-retrieved soil moisture induced by uncertainty of soil surface combined roughness[J]. Journal of Geo-information Science, 2018,20(1):108-118. ]
doi: 10.12082/dqxxkx.2018.170319 |
|
[15] |
Dawson T, Curran P, North P , et al. The propagation of foliar biochemical absorption features in forest canopy reflectance: A theoretical analysis[J]. Remote Sensing of Environment, 1999,67(2):147-159.
doi: 10.1016/S0034-4257(98)00081-9 |
[16] |
Zhang Y, Liu X, Su S , et al. Retrieving canopy height and density of paddy rice from radarsat-2 images with a canopy scattering model[J]. International Journal of Applied Earth Observation & Geoinformation, 2014,28(1):170-180.
doi: 10.1007/s10661-019-7996-9 pmid: 31828438 |
[17] |
Jordan C F . Derivation of leaf area index from quality of light on the forest floor[J]. Ecology, 1969,50(4):663-666.
doi: 10.2307/1936256 |
[18] |
Hunt E R, Rock B N . Detection of changes in leaf water content using near-and middle-infrared reflectance[J]. Remote Sensing of Environment, 1989,30(1):43-54.
doi: 10.1016/0034-4257(89)90046-1 |
[19] |
Chen D, Huang J, Jackson T J , et al. Vegetation water content estimation for corn and soybeans using spectral indices derived from MODIS near -and short-wave infrared bands[J]. Remote Sensing of Environment, 2005,98(2):225-236.
doi: 10.1016/j.rse.2005.07.008 |
[20] |
Serrano L, Ustin S L, Roberts D A , et al. Deriving water content of chaparral vegetation from AVIRIS data[J]. Remote Sensing of Environment, 2000,74(3):570-581.
doi: 10.1016/S0034-4257(00)00147-4 |
[21] | Wang L, Qu J J . NMDI: A normalized multi-band drought index for monitoring soil and vegetation moisture with satellite remote sensing[J]. Geophysical Research Letters, 2007,34(20):117-131. |
[22] | 张佳华, 许云, 姚凤梅 , 等. 植被含水量光学遥感估算方法研究进展[J]. 中国科学:技术科学, 2010,40(10):1121-1129. |
[ Zhang J H, Xu Y, Yao F M , et al. Research progress on optical remote sensing estimation methods for vegetation water content[J]. Scientia Sinica Technologica, 2010,40(10):1121-1129. ] | |
[23] |
Huete A, Didan K, Miura T , et al. Overview of the radiometric and biophysical performance of the MODIS vegetation indices[J]. Remote Sensing of Environment, 2002,83(1-2):195-213.
doi: 10.1016/S0034-4257(02)00096-2 |
[24] |
Cheng Y B, Zarco-Tejada P J, Riano D , et al. Estimating vegetation water content with hyperspectral data for different canopy scenarios: Relationships between AVIRIS and MODIS indexes[J]. Remote Sensing of Environment, 2006,105(4):354-366.
doi: 10.1016/j.rse.2006.07.005 |
[25] |
Roo R D, Du Y, Ulaby F T , et al. A semi-empirical backscattering model at L-band and C-band for a soybean canopy with soil moisture inversion[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001,39(4):864-872.
doi: 10.1109/36.917912 |
[26] |
Fung A K, Li Z, Chen K S , et al. Backscattering from a randomly rough dielectric surface[J]. IEEE Transaction on Geoscience & Remote Sensing, 1992,30(2):356-369.
doi: 10.1016/j.jenvman.2006.04.023 pmid: 17123698 |
[27] |
Wu T D, Chen K S, Shi J , et al. A transition model for the reflection coefficient in surface scattering[J]. Geoscience & Remote Sensing IEEE Transactions on, 1998,39(9):2040-2050.
doi: 10.1016/j.envpol.2019.113804 pmid: 31874439 |
[28] |
Jackson T J, Chen D, Cosh M , et al. Vegetation water content mapping using landsat data derived normalized difference water index for corn and soybeans[J]. Remote Sensing of Environment, 2004,92(4):475-482.
doi: 10.1016/j.rse.2003.10.021 |
[29] |
蒋金豹, 张玲, 崔希民 , 等. 植被覆盖区土壤水分反演研究——以北京市为例[J]. 国土资源遥感, 2014,26(2):27-32.
doi: 10.6046/gtzyyg.2014.02.05 |
[ Jiang J B, Zhang L, Cui X M , et al. Soil moisture inversion in the vegetation-covered area: A case study of Beijing city[J]. Remote Sensing for Land & Resources, 2014,26(2):27-32. ]
doi: 10.6046/gtzyyg.2014.02.05 |
|
[30] |
Hunt E R, Li L, Yilmaz M T , et al. Comparison of vegetation water contents derived from shortwave-infrared and passive-microwave sensors over central Iowa[J]. Remote Sensing of Environment, 2011,115(9):2376-2383.
doi: 10.1016/j.rse.2011.04.037 |
[31] | 王春梅, 余涛, 孟庆岩 , 等. 基于全极化雷达数据反演夏玉米覆盖农田表层土壤含水量[J]. 水资源与水工程学报, 2014,25(2):29-34. |
[ Wang C M, Yu T, Meng Q Y , et al. Surface soil moisture of farmland covered by summer corn stalk retrieved by full polarimetric radar data[J]. Journal of Water Resources and Water Engineering, 2014,25(2):29-34. ] |
[1] | 覃湘栋, 庞治国, 江威, 冯天时, 付俊娥. 土壤水分微波反演方法进展和发展趋势[J]. 地球信息科学学报, 2021, 23(10): 1728-1742. |
[2] | 高亮, 杜鑫, 李强子, 王红岩, 张源, 王思远. 融合土地覆盖和土壤水分产品的近地表空气温度空间化方法[J]. 地球信息科学学报, 2020, 22(10): 2023-2037. |
[3] | 王雅婷,孔金玲,杨亮彦,李健锋,张文博. 基于SVR的旱区稀疏植被覆盖下土壤水分遥感反演[J]. 地球信息科学学报, 2019, 21(8): 1275-1283. |
[4] | 陈鲁皖, 韩玲, 王文娟, 秦小宝. 地表组合粗糙度不确定性引起的SAR反演土壤水分的不确定性分析[J]. 地球信息科学学报, 2018, 20(1): 108-118. |
[5] | 贾艳昌, 谢谟文, 姜红涛. 全球36 km格网土壤水分逐日估算[J]. 地球信息科学学报, 2017, 19(6): 854-860. |
[6] | 孔金玲, 李菁菁, 甄珮珮, 杨笑天, 杨晶, 吴哲超. 微波与光学遥感协同反演旱区地表土壤水分研究[J]. 地球信息科学学报, 2016, 18(6): 857-863. |
[7] | 郭云开, 苟叶培. 高速公路对路域植被影响的时空格局变化遥感监测分析[J]. 地球信息科学学报, 2016, 18(11): 1537-1543. |
[8] | 刘玉琴, 孟庆岩, 沙晋明, 石锋, 刘苗, 王春梅. 基于HJ-1A CCD1数据的台湾相思树叶面积指数反演[J]. 地球信息科学学报, 2014, 16(4): 645-652. |
[9] | 王璐, 胡月明, 赵英时, 刘振华*. 克里格法的土壤水分遥感尺度转换[J]. 地球信息科学学报, 2012, 14(4): 465-473. |
[10] | 白开旭, 刘朝顺, 施润和, 高炜. 2010年中国西南旱情的时空特征分析——基于MODIS数据归一化干旱指数[J]. 地球信息科学学报, 2012, 14(1): 32-40,48. |
[11] | 魏小兰, 李震, 陈权. S波段雷达数据反演土壤水分的模拟分析和验证[J]. 地球信息科学学报, 2008, 10(1): 97-101,108. |
|