地球信息科学学报 ›› 2019, Vol. 21 ›› Issue (12): 1888-1902.doi: 10.12082/dqxxkx.2019.190269
黄葵1,2,3,4, 卢毅敏1,2,*(), 魏征3,4, 陈鹤3,4, 张宝忠3,4, 马文津3,4
收稿日期:
2019-05-31
修回日期:
2019-10-08
出版日期:
2019-12-25
发布日期:
2019-12-25
通讯作者:
卢毅敏
E-mail:luym@lreis.ac.cn
作者简介:
黄 葵(1994-),男,安徽安庆人,硕士生,研究方向为资源环境遥感及应用研究。E-mail: huangkui_1994@163.com
基金资助:
HUANG Kui1,2,3,4, LU Yimin1,2,*(), WEI Zheng3,4, CHEN He3,4, ZHANG Baozhong3,4, MA Wenjin3,4
Received:
2019-05-31
Revised:
2019-10-08
Online:
2019-12-25
Published:
2019-12-25
Contact:
LU Yimin
E-mail:luym@lreis.ac.cn
Supported by:
摘要:
蒸散发(ET)是水文能量循环和气候系统的关键环节,研究ET的时空变化特征及其响应土地利用和气候变化的驱动机制对于理清流域水资源和气候变化的关系具有重要的意义。本文基于MOD16/ET数据集定量分析了海河流域2000-2014年ET的时空变化特征,并结合时序气温降水数据和土地利用数据,采用相关分析方法定量探索了ET与气候因子的驱动力关系。结果表明:① 海河流域2000-2014年ET表现为较为显著的空间分布格局,呈现出北部和南部高、西北部和中东部低的分布特性。不同土地利用类型的多年ET呈林地>草地>耕地>其他类型的特征;② 2000-2014年海河流域年均ET波动范围为371.96~441.29 mm/a,多年ET的均值为398.69 mm/a,平均相对变化率为-0.41%,整体呈下降趋势;③ 多年月ET与气温和降水均呈单峰型周期性变化趋势,年内月ET呈单峰变化趋势;④ 春秋两季的ET与降水和气温的相关性明显高于其他季节,ET与气温和降水的平均相关系数是-0.17和0.37,表明降水对于ET的响应程度强于气温;⑤ 驱动分区结果表明海河流域ET受气候因子驱动的主要类型是降水驱动型和降水、气温共同驱动型;⑥ 海河流域耕地ET变化气候因子驱动模式主要是降水、气温共同驱动型;林地、草地的驱动模式主要气温驱动型和降水驱动型,其他土地利用类型的驱动模式主要是受其他因素驱动。该研究将对海河流域水资源开发管理和区域气候调节起到科学指导作用。
黄葵, 卢毅敏, 魏征, 陈鹤, 张宝忠, 马文津. 土地利用和气候变化对海河流域蒸散发时空变化的影响[J]. 地球信息科学学报, 2019, 21(12): 1888-1902.DOI:10.12082/dqxxkx.2019.190269
HUANG Kui, LU Yimin, WEI Zheng, CHEN He, ZHANG Baozhong, MA Wenjin. Effects of Land Use and Climate Change on Spatiotemporal Changes of Evapotranspiration in Haihe River Basin[J]. Journal of Geo-information Science, 2019, 21(12): 1888-1902.DOI:10.12082/dqxxkx.2019.190269
[1] |
Jung M, Reichstein M, Ciais P , et al. Recent decline in the global land evapotranspiration trend due to limited moisture supply[J]. Nature, 2010,467(7318):951-954.
doi: 10.1038/nature09396 pmid: 20935626 |
[2] |
Shukla J, Mintz Y . Influence of land-surface evapotranspiration on the earth's climate[J]. Science, 1982,215(4539):1498-1501.
doi: 10.1126/science.215.4539.1498 pmid: 17788673 |
[3] |
Sharma V, Kilic A, Irmak S . Impact of scale/resolution on evapotranspiration from Landsat and MODIS images[J]. Water Resources Research, 2016,52(3):1800-1819.
doi: 10.1002/2015WR017772 |
[4] | 刘健, 张奇, 许崇育 , 等. 近50年鄱阳湖流域实际蒸发量的变化及影响因素[J]. 长江流域资源与环境, 2010,19(2):139-145. |
[ Liu J, Zhang Q, Xu C Y , et al. Change of actual evapotranspiration of Poyang lake watershed and associated influencing factors in the past 50 years[J]. Resources and Environment in the Yangtze Basin, 2010,19(2):139-145. ] | |
[5] |
王莺, 张雷, 王劲松 . 洮河流域土地利用/覆被变化的水文过程响应[J]. 冰川冻土, 2016,38(1):200-210.
doi: 10.7522/j.isnn.1000-0240.2016.0023 |
[ Wang Y, Zhang L, Wang J S . Response of the hydrological process to land-use/cover change in Taohe River basin[J]. Journal of Glaciology and Geocryology, 2016,38(1):200-210. ]
doi: 10.7522/j.isnn.1000-0240.2016.0023 |
|
[6] |
尹剑, 欧照凡, 付强 , 等. 区域尺度蒸散发遥感估算——反演与数据同化研究进展[J]. 地理科学, 2018,38(3):448-456.
doi: 10.13249/j.cnki.sgs.2018.03.015 |
[ Yin J, Ou Z F, Fu Q , et al. Review of current methodologies for regional evapotranspiration estimation: inversion and data assimilation[J]. Scientia Geographica Sinica, 2018,38(3):448-456.]
doi: 10.13249/j.cnki.sgs.2018.03.015 |
|
[7] |
占车生, 董晴晴, 叶文 , 等. 基于水文模型的蒸散发数据同化研究进展[J]. 地理学报, 2015,70(5):809-818.
doi: 10.11821/dlxb201505011 |
[ Zhan C S, Dong Q Q, Ye W , et al. A review on evapotranspiration data assimilation based on hydrological models[J]. Acta Geographica Sinica, 2015,70(5):809-818. ]
doi: 10.11821/dlxb201505011 |
|
[8] |
Yun B, Jiahua Z, Sha Z , et al. A remote sensing based two-leaf canopy conductance model: Global optimization and applications in modeling gross primary productivity and evapotranspiration of crops[J]. Remote Sensing of Environment, 2018,215:411-437.
doi: 10.1016/j.rse.2018.06.005 |
[9] |
阿布都沙拉木·吐鲁甫, 买买提·沙吾提, 马春玥 , 等. 基于SEBAL模型的渭库绿洲蒸散量特征及影响因子研究[J]. 地球信息科学学报, 2018,20(9):1361-1372.
doi: 180043/dqxxkx.2018.180043 |
[ Abdusalam Turup, Mamat Sawut, Ma C Y , et al. Characteristics and impact factors of evapotranspiration in Ugan and Kuqa Rivers Delta Oasis based on SEBAL model[J]. Journal of Geo information Science, 2018,20(9):1361-1372. ]
doi: 180043/dqxxkx.2018.180043 |
|
[10] | Sumit Sharma, Nithya Rajan, Song Cui , et al. Carbon and evapotranspiration dynamics of a nonnative perennial grass with biofuel potential in the southern U.S. Great Plains[J]. Agricultural and Forest Meteorology, 2019, 269-270. |
[11] |
阿迪来·乌甫, 玉素甫江·如素力, 热伊莱·卡得尔 , 等. 伊犁河谷蒸散量时空分布特征及变化趋势[J]. 地球信息科学学报, 2018,20(2):217-227.
doi: 10.12082/dqxxkx.2018.170102 |
[ Adilai Wufu, Yusufujiang Rusuli, Reyilai Kadeer , et al. Spatiotemporal distribution and variation trend of evapotranspiration in Ili River valley[J]. Journal of Geo-information Science, 2018,20(2):217-227. ]
doi: 10.12082/dqxxkx.2018.170102 |
|
[12] | 张圣微, 张鹏, 张睿 , 等. 科尔沁沙地典型区生长季蒸散发估算及其变化特征[J]. 水科学进展, 2018,29(6):768-778. |
[ Zhang S W, Zhang P, Zhang R , et al. Estimation of growing season evapotranspiration and its variation in a typical area of Horqin Sandy Land[J]. Advances in Water Science, 2018,29(6):768-778. ] | |
[13] |
Yang Y, Shang S, Jiang L . Remote sensing temporal and spatial patterns of evapotranspiration and the responses to water management in a large irrigation district of North China[J]. Agricultural and Forest Meteorology, 2012,164:112-122.
doi: 10.1016/j.agrformet.2012.05.011 |
[14] | Ma Z Z, Ray R L, He Y P . Assessing the spatiotemporal distributions of evapotranspiration in the Three Gorges Reservoir Region of China using remote sensing data[J]. Journal of Mountain Science, 2018,15(12):119-135. |
[15] | Xu T, Liang S, Liu S . Estimating turbulent fluxes through assimilation of geostationary operational environmental satellites data using ensemble Kalman filter[J]. Journal of Geophysical Research Atmospheres, 2011,116(D9). |
[16] | Bastiaanssen W G M, Pelgrum H, Wang J , et al. A remote sensing surface energy balance algorithm for land (SEBAL):2. Validation[J]. Journal of Hydrology, 1998,212(1-4):213-229. |
[17] | 吕玉平, 徐俊增, 李斌 , 等. Priestley-Taylor和Hargreaves公式在高矮两种参考作物上的适应性与率定[J]. 水利水电科技进展,2015, 35(6):47-51. |
[ Lv Y P, Xu J Z, Li B , et al. Calibration of Priestley-Taylor and Hargreaves and its applicability for both alfalfa and grass reference crops[J]. Advances in Science and Technology of Water Resources, 2015,35(6):47-51. ] | |
[18] |
Cleugh H A, Leuning R, Mu Q , et al. Regional evaporation estimates from flux tower and MODIS satellite data[J]. Remote Sensing of Environment, 2007,106(3):285-304.
doi: 10.1016/j.rse.2006.07.007 |
[19] |
Cherchali S, Amram O, Flouzat G . Retrieval of temporal profiles of reflectances from simulated and real NOAA-AVHRR data over heterogeneous landscapes[J]. International Journal of Remote Sensing, 2000,21(4):753-775.
doi: 10.1080/014311600210551 |
[20] |
Rahimikhoob A, Hosseinzadeh M . Assessment of Blaney-Criddle equation for calculating reference evapotranspiration with NOAA/AVHRR data[J]. Water Resources Management, 2014,28(10):3365-3375.
doi: 10.1007/s11269-014-0670-7 |
[21] |
Jia L, Xi G, Liu S , et al. Regional estimation of daily to annual regional evapotranspiration with MODIS data in the Yellow River Delta wetland[J]. Hydrology and Earth System Sciences, 2009,13(10):1775-1787.
doi: 10.5194/hess-13-1775-2009 |
[22] |
Mu Q, Zhao M, Running S W . Improvements to a MODIS global terrestrial evapotranspiration algorithm[J]. Remote Sensing of Environment, 2011,115(8):1781-1800.
doi: 10.1016/j.rse.2011.02.019 |
[23] |
叶红, 张廷斌, 易桂花 , 等. 2000-2014年黄河源区ET时空特征及其与气候因子关系[J]. 地理学报, 2018,73(11):2117-2134.
doi: 10.11821/dlxb201811006 |
[ Ye H, Zhang T B, Yi G H , et al. Spatio-temporal characteristics of evap-otranspiration and its relationship with climate factors in the source region of the Yellow River from 2000 to 2014[J]. Acta Geographica Sinica, 2018,73(11):2117-2134. ]
doi: 10.11821/dlxb201811006 |
|
[24] |
吴桂平, 刘元波, 赵晓松 , 等. 基于MOD16产品的鄱阳湖流域地表蒸散量时空分布特征[J]. 地理研究, 2013,32(4):617-627.
doi: 10.11821/yj2013040004 |
[ Wu G P, Liu Y B, Zhao X S , et al. Spatio-temporal variations of evapotranspiration in Poyang Lake Basin using MOD16 products[J]. Geographical Research, 2013,32(4):617-627. ]
doi: 10.11821/yj2013040004 |
|
[25] | 张猛, 曾永年, 齐玥 . 基于MOD16的洞庭湖流域2000-2014年地表蒸散时空变化分析[J]. 农业工程学报, 2018,34(20):160-168. |
[ Zhang M, Zeng Y N, Qi Y . Analyzing spatio-temporal variations of e-vapotranspiration in Dongting Lake Basin during 2000-2014 based on MOD16[J]. Transactions of the ChineseSociety of Agricultural Engineering (Transactions of the CSAE), 2018,34(20):160-168. ] | |
[26] |
贺添, 邵全琴 . 基于MOD16产品的我国2001-2010年蒸散发时空格局变化分析[J]. 地球信息科学学报, 2014,16(6):979-988.
doi: 10.3724/SP.J.1047.2014.00979 |
[ He T, Shao Q Q . Spatial-temporal variation of terrestrial evapotranspiration in China from 2001 to 2010 using MOD16 products[J]. Journal of Geo-information Science, 2014,16(6):979-988. ]
doi: 10.3724/SP.J.1047.2014.00979 |
|
[27] | 杨永辉, 任丹丹, 杨艳敏 , 等. 海河流域水资源演变与驱动机制[J]. 中国生态农业学报, 2018,26(10):1443-1453. |
[ Yang Y H, Ren D D, Yang Y M , et al. Advances in clarification of the driving forces of water shortage in Haihe River Catchment[J]. Chinese Journal of Eco-Agriculture, 2018,26(10):1443-1453. ] | |
[28] | 曹永强, 张亭亭, 徐丹 , 等. 海河流域蒸散发时空演变规律分析[J]. 资源科学, 2014,36(7):1489-1500. |
[ Cao Y Q, Zhang T T, Xu D , et al. Analysis of evapotranspiration of temporal-space evolution in the Haihe Basin[J]. Resources Science, 2014,36(7):1489-1500. ] | |
[29] | 吴炳方, 熊隽, 闫娜娜 , 等. 基于遥感的区域蒸散量监测方法-ETWatch[J]. 水科学进展, 2008(5):671-678. |
[ Wu B F, Xiong J, Yan N N , et al. ETWatch for monitoring regional evapotranspiration with remote sensing[J]. Advances in Water Science, 2008(5):671-678. ] | |
[30] | 王永财, 孙艳玲, 王中良 . 1998-2011年海河流域植被覆盖变化及气候因子驱动分析[J]. 资源科学, 2014,36(3):594-602. |
[ Wang Y C, Sun Y L, Wang Z L . Spatial-temporal change in vegetation cover and climate factor drivers of variation in the Haihe River Basin 1998-2011[J]. Resources Science, 2014,36(3):594-602. ] | |
[31] |
孔佩儒, 陈利顶, 孙然好 , 等. 海河流域面源污染风险格局识别与模拟优化[J]. 生态学报, 2018,38(12):4445-4453.
doi: 10.5846/stxb201801310270 |
[ Kong P R, Chen L D, Sun R H , et al. Identification and optimized simulation of non point source pollution risk patterns in the Haihe River Basin[J]. Acta Ecologica Sinica, 2018,38(12):4445-4453. ]
doi: 10.5846/stxb201801310270 |
|
[32] | 赵安周, 张安兵, 冯莉莉 , 等. 海河流域生态水分利用效率时空变化及其与气候因子的相关性分析[J]. 生态学报, 2019,39(04):1452-1462. |
[ Zhao A Z, Zhang A B, Feng L L , et al. Spatio-temporal characteristics of water use efficiency and its relationship with climatic factors in the Haihe River basin[J]. Acta Ecologica Sinica, 2019,39(4):1452-1462. ] | |
[33] |
周侃, 樊杰, 刘汉初 . 环渤海地区水污染物排放的时空格局及其驱动因素[J]. 地理科学进展, 2017,36(2):171-181.
doi: 10.18306/dlkxjz.2017.02.004 |
[ Zhou K, Fan J, Liu H C . Spatiotemporal patterns and driving forces of water pollutant discharge in the Bohai Rim Region[J]. Progress in Geography, 2017,36(2):171-181. ]
doi: 10.18306/dlkxjz.2017.02.004 |
|
[34] |
王强, 张廷斌, 易桂花 , 等. 横断山区2004-2014年植被NPP时空变化及其驱动因子[J]. 生态学报, 2017,37(9):3084-3095.
doi: 10.5846/stxb201602030248 |
[ Wang Q, Zhang T B, Yi G H , et al. Tempo-spatial variations and driving factors analysis of net primary productivity in the Hengduan mountain area from 2004 to 2014[J]. Acta Ecologica Sinica, 2017,37(9):3084-3095. ]
doi: 10.5846/stxb201602030248 |
|
[35] |
张静, 任志远 . 基于MOD16的汉江流域地表蒸散发时空特征[J]. 地理科学, 2017,37(2):274-282.
doi: 10.13249/j.cnki.sgs.2017.02.014 |
[ Zhang J, Ren Z Y . Spatiotemporal characteristics of evapotranspiration based on MOD16 in the Hanjiang River Basin[J]. Scientia Geographica Sinica, 2017,37(2):274-282. ]
doi: 10.13249/j.cnki.sgs.2017.02.014 |
|
[36] |
Smith A A, Welch C, Stadnyk T A . Assessing the seasonality and uncertainty in evapotranspiration partitioning using a tracer-aided model[J]. Journal of Hydrology, 2018: 560:595-613.
doi: 10.1016/j.jhydrol.2018.03.036 |
[37] |
王景才, 郭佳香, 徐蛟 , 等. 近55年淮河上中游流域气候要素多时间尺度演变特征及关联性分析[J]. 地理科学, 2017,37(4):611-619.
doi: 10.13249/j.cnki.sgs.2017.04.015 |
[ Wang J C, Guo J X, Xu J , et al. Multi-time scales change characteristics and relationship of meteorological variables in the upper and middle regions of the Huaihe River Basin in recent 55 years[J]. Scientia Geographica Sinica, 2017,37(4):611-619. ]
doi: 10.13249/j.cnki.sgs.2017.04.015 |
|
[38] |
Poon P K, Kinoshita A M . Spatial and temporal evapotranspiration trends after wildfire in semiarid landscapes[J]. Journal of Hydrology, 2018,559:71-83.
doi: 10.1016/j.jhydrol.2018.02.023 |
[39] | Zhai R, Tao F, Xu Z . Spatial-temporal changes in runoff and terrestrial ecosystem water retention under 1.5 and 2 ℃ warming scenarios across China[J]. Earth System Dynamics Discussions, 2017: 1-31. |
[40] |
Choi Y . A new algorithm to calculate weighted flow-accumulation from a DEM by considering surface and underground stormwater infrastructure[J]. Environmental Modelling & Software, 2012,30:81-91.
doi: 10.1016/j.dib.2019.104821 pmid: 31871978 |
[41] | Li R N, Zheng H, Huang B B , et al. Dynamic impacts of climate and landuse changes on surface runoff in the mountainous region of the Haihe River Basin, China[J]. Advances in Meteorology, 2018,2018:1-10. |
[42] | 鲍振鑫, 严小林, 王国庆 , 等. 气象因子在海河流域蒸发悖论中的作用机理[J]. 水资源与水工程学报, 2014,25(3):1-7. |
[ Bao Z X, Yan X L, Wang G Q , et al. Mechanism of effect of meteorological factors in paradox theory of pan evaporation of Haihe River basin[J]. Journal of Water Resources &Water Engineering, 2014,25(3):1-7. ] | |
[43] |
Lei H, Yang D, Lokupitiya E , et al. Coupling land surface and crop growth models for predicting evapotranspiration and carbon exchange in wheat-maize rotation croplands[J]. Biogeosciences, 2010,7(10):3363-3375.
doi: 10.5194/bg-7-3363-2010 |
[44] |
Lei H, Yang D . Interannual and seasonal variability in evapotranspiration and energy partitioning over an irrigated cropland in the North China Plain[J]. Agricultural and Forest Meteorology, 2010,150(4):581-589.
doi: 10.1016/j.agrformet.2010.01.022 |
[1] | 杜毅贤, 徐家鹏, 钟琳颖, 侯盈旭, 沈婕. 网络舆情态势及情感多维特征分析与可视化——以COVID-19疫情为例[J]. 地球信息科学学报, 2021, 23(2): 318-330. |
[2] | 高楹, 宋辞, 郭思慧, 裴韬. 接驳地铁站的共享单车源汇时空特征及其影响因素[J]. 地球信息科学学报, 2021, 23(1): 155-170. |
[3] | 刘新, 赵宁, 郭金运, 郭斌. 基于LSTM神经网络的青藏高原月降水量预测[J]. 地球信息科学学报, 2020, 22(8): 1617-1629. |
[4] | 龚围, 李丽, 柳钦火, 辛晓洲, 彭志晴, 邬明权, 牛铮, 田海峰. “一带一路”区域水电站工程生态环境影响遥感监测[J]. 地球信息科学学报, 2020, 22(7): 1424-1436. |
[5] | 杨艳昭, 郎婷婷, 张超, 贾琨. 基于GIS的“一带一路”地区气温插值方法比较研究[J]. 地球信息科学学报, 2020, 22(4): 867-876. |
[6] | 何飞, 刘兆飞, 姚治君. Jason-2测高卫星对湖泊水位的监测精度评价[J]. 地球信息科学学报, 2020, 22(3): 494-504. |
[7] | 刘艳霞, 冯莉, 田慧慧, 阳少奇. 中国气候舒适度时空分布特征分析[J]. 地球信息科学学报, 2020, 22(12): 2338-2347. |
[8] | 高亮, 杜鑫, 李强子, 王红岩, 张源, 王思远. 融合土地覆盖和土壤水分产品的近地表空气温度空间化方法[J]. 地球信息科学学报, 2020, 22(10): 2023-2037. |
[9] | 周佳, 赵亚鹏, 岳天祥, 卢涛. 结合HASM和GWR方法的省级尺度近地表气温估算[J]. 地球信息科学学报, 2020, 22(10): 2098-2107. |
[10] | 左琪琳,赵娜,段红梅. 虚拟站点在黑河流域降水模拟中的应用[J]. 地球信息科学学报, 2019, 21(8): 1218-1226. |
[11] | 胡顺石, 张辰璐, 彭雨龙, 谭子芳. 湖南省不同云状态的时空特征分析[J]. 地球信息科学学报, 2019, 21(5): 688-698. |
[12] | 徐轩, 李均力, 包安明, 王宝山, 李长春. 新疆五彩湾矿区开发对荒漠植被的扰动分析[J]. 地球信息科学学报, 2019, 21(12): 1934-1944. |
[13] | 史岚,何其全,杨娇,万逸波. 闽浙赣地区GPM IMERG降水产品降尺度建模与比较分析[J]. 地球信息科学学报, 2019, 21(10): 1642-1652. |
[14] | 孟斌, 黄松, 尹芹. 北京市居民地铁出行出发时间弹性时空分布特征研究[J]. 地球信息科学学报, 2019, 21(1): 107-117. |
[15] | 马廷. 夜光遥感大数据视角下的中国城市化时空特征[J]. 地球信息科学学报, 2019, 21(1): 59-67. |
|