地球信息科学学报 ›› 2019, Vol. 21 ›› Issue (11): 1655-1668.doi: 10.12082/dqxxkx.2019.190358
• 地球信息科学理论与方法 • 下一篇
柳林1,2,3,4,*(), 纪佳楷1,2, 宋广文3, 廖薇薇1,2, 余洪杰1,2, 刘文娟1,2
收稿日期:
2019-07-05
修回日期:
2019-10-08
出版日期:
2019-11-25
发布日期:
2019-12-11
作者简介:
柳林(1965-),男,湖南湘潭人,博士,教授,博导,主要从事犯罪空间模拟、多智能体模拟、GIS应用等研究。E-mail: lin.liu@uc.edu
基金资助:
LIU Lin1,2,3,4,*(), JI Jiakai1,2, SONG Guangwen3, LIAO Weiwei1,2, YU Hongjie1,2, LIU Wenjuan1,2
Received:
2019-07-05
Revised:
2019-10-08
Online:
2019-11-25
Published:
2019-12-11
Contact:
LIU Lin
Supported by:
摘要:
机器学习是当前犯罪热点预测的主流方法,随机森林算法因需要的数据量较小、有较好的预测能力和预测精确度、且有较高的可理解度,更是被广泛应用,代表地理环境和建成环境的多源数据也被广泛用于模型改进的尝试实践中,但这些实践都只考虑研究区整体的预测精度变化情况,并未区分不同区域犯罪热点预测结果的差异及其原因。因此,本文以公共场所侵财犯罪为例,根据历史犯罪分布情况及过往犯罪热点分布规律,将研究区分为稳定高发热点网格、较高发热点网格、偶发热点网格及非热点网格这4类,并依据社会失序理论、日常活动理论和犯罪模式理论,选取城中村范围、路网密度及POI(餐饮、娱乐、商场3类设施)密度这3个具有代表性的协变量加入到随机森林预测模型中,探讨预测结果精度的变化情况。根据2017年26个双周的犯罪热点预测实验的预测结果,得到以下结论:加入协变量后,研究区整体、稳定高发热点网格及较高发热点网格的预测精度都有不同程度的提高,分区模型的精度显著高于整体模型的精度,说明考虑空间分异对提高模型精度起重要作用。
柳林, 纪佳楷, 宋广文, 廖薇薇, 余洪杰, 刘文娟. 基于犯罪空间分异和建成环境的公共场所侵财犯罪热点预测[J]. 地球信息科学学报, 2019, 21(11): 1655-1668.DOI:10.12082/dqxxkx.2019.190358
LIU Lin, JI Jiakai, SONG Guangwen, LIAO Weiwei, YU Hongjie, LIU Wenjuan. Hotspot Prediction of Public Property Crime based on Spatial Differentiation of Crime and Built Environment[J]. Journal of Geo-information Science, 2019, 21(11): 1655-1668.DOI:10.12082/dqxxkx.2019.190358
表2
2017.12.17-2017.12.30犯罪热点预测实验说明
周期性 | 邻近性 | |
---|---|---|
训练数据集 (2017.12.03-12.16) | 2014.12.03-12.16 2015.12.03-12.16 2016.12.03-12.16 | 2017.10.08-10.21 2017.10.22-11.04 2017.11.05-11.18 2017.11.19-12.02 (建成环境变量) |
输入热点/非热点分类标签 | ||
待预测数据集 (2017.12.17-12.30) | 2014.12.17-12.30 2015.12.17-12.30 2016.12.17-12.30 | 2017.10.22-11.04 2017.11.05-11.18 2017.11.19-12.02 2017.12.03-12.16 (建成环境变量) |
输出热点/非热点分类标签 |
[1] |
Ratcliffe J H . A temporal constraint theory to explain opportunity-based spatial offending patterns[J]. Journal of Research in Crime and Delinquency, 2016,43(3):261-291.
doi: 10.1177/0022427806286566 |
[2] |
Gorr W, Harries R . Introduction to crime forecasting[J]. International Journal of Forecasting, 2003,19(4):551-555.
doi: 10.1016/S0169-2070(03)00089-X |
[3] |
Rummens A, Hardyns W, Pauwels L . The use of predictive analysis in spatiotemporal crime forecasting: Building and testing a model in an urban context[J]. Applied Geography, 2017,86:255-261.
doi: 10.1016/j.apgeog.2017.06.011 |
[4] | 李卫红, 闻磊, 陈业滨 . 改进的GA-BP神经网络模型在财产犯罪预测中的应用[J]. 武汉大学学报·信息科学版, 2017,42(8):1110-1116. |
[ Li W H, Wen L, Chen Y B . Application of improved GA-BP neural network model in property crime prediction[J]. Geomatics and Information Science of Wuhan University, 2017,42(8):1110-1116. ] | |
[5] |
Rodriguez-Galiano V F, Ghimire B, Rogan J , et al. An assessment of the effectiveness of a random forest classifier for land-cover classification[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2012,67:93-104.
doi: 10.1016/j.isprsjprs.2011.11.002 |
[6] |
马慧娟, 高小红, 谷晓天 . 随机森林方法支持的复杂地形区土地利用/土地覆被分类研究[J]. 地球信息科学学报, 2019,21(3):359-371.
doi: 10.12082/dpxxkx.2019.180346 |
[ Ma H J, Gao X H, Gu X T . Land use/land cover classification of complex terrain areas supported by random forest method[J]. Journal of Geo-information Science, 2019,21(3):359-371. ]
doi: 10.12082/dpxxkx.2019.180346 |
|
[7] | 卢睿, 李林瑛 . 基于随机森林的犯罪预测模型[J].中国刑警学院学报, 2019(3):108-112. |
[ Lu R, Li L Y . Crime prediction model based on random forest[J]. Journal of China Criminal Police College, 2019(3):108-112. ] | |
[8] | Bogomolov A, Lepri B, Staiano J . Once upon a crime: Towards crime prediction from demographics and mobile data[C]. International Conference on Multimodal Interaction ACM, 2014: 427-434. |
[9] |
Levine N . Commentary the "Hottest" part of a hotspot: Comments on "The Utility of Hotspot Mapping for Predicting Spatial Patterns of Crime"[J]. Security Journal, 2008,21:295-302.
doi: 10.1057/sj.2008.5 |
[10] | 王雨晨, 过仲阳, 王媛媛 . 基于随机森林的犯罪风险预测模型研究[J].华东师范大学学报(自然科学版), 2017(4):89-96. |
[ Wang Y C, Guo Z Y, Wang Y Y . Research on criminal risk prediction model based on random forest[J]. Journal of East China Normal University (Natural Science Edition), 2017(4):89-96. ] | |
[11] | 孙菲菲, 曹卓, 肖晓雷 . 基于随机森林的分类器在犯罪预测中的应用研究[J]. 情报杂志, 2014,33(10):148-152. |
[ Sun F F, Cao Z, Xiao X L . Application research of classifier based on random forest in crime prediction[J]. Intelligence Magazine, 2014,33(10):148-152. ] | |
[12] |
Cohen L E, Felson M P . Social change and crime rate trends: A routine activity approach[J]. American Sociological Review, 1979,44(4):588-608.
doi: 10.2307/2094589 |
[13] | Merleau M. The structure of behavior[M]. Boston: Beacon Press, 1963: 188-189. |
[14] | Schutz A. The phenomenology of the social world[M]. Chicago: Northwest University Press, 1967: 34. |
[15] | Brantingham P L, Brantingham A J . Nodes,paths and edges: Considerations on the complexity of crime and the physical environment[J]. Journal of Environmental Psychology, 1993(13):3-28. |
[16] | 周东平 . 西方环境犯罪学:理论、实践及借鉴意义[J].厦门大学学报(哲学社会科学版), 2014(3):20-28. |
[ Zhou D P . Western environmental criminology: Theory, practice and reference significance[J]. Journal of Xiamen University (Philosophy and Social Sciences Edition), 2014(3):20-28. ] | |
[17] |
Qin X, Liu L . Evaluating the relationships of bus transit with street and off- street robberies[J]. Professional Geographer, 2015,68(2):1-11.
doi: 10.1080/00330124.2015.1006556 |
[18] | Hart T C, Miethe T D . Street robbery and public bus stops: A case study of activity nodes and situational risk[J]. Security, 2014,27(2):180-193. |
[19] |
Blair L, Wilcox P Eck J . Facilities, opportunity, and crime: An exploratory analysis of places in two urban neighborhoods[J]. Crime Prevention & Community Safety, 2017,19(1):1-21.
doi: 10.1186/s12966-019-0873-7 pmid: 31815626 |
[20] |
段炼, 党兰学, 胡涛 , 等. 融合历史犯罪数据的疑犯社会活动位置预测[J]. 地球信息科学学报, 2018,20(7):929-938.
doi: 10.12082/dqxxkx.2018.180036 |
[ Duan L, Dang L X, Hu T , et al. Prediction of social activity location of suspects with historical crime data[J]. Journal of Geo-information Science, 2018,20(7):928-938. ]
doi: 10.12082/dqxxkx.2018.180036 |
|
[21] |
Zhang H, Song W . Addressing issues of spatial spillover effects and non-stationarity in analysis of residential burglary crime[J]. Geojournal, 2014,79(1):89-102.
doi: 10.1007/s10708-013-9481-2 |
[22] |
Arnio A N, Baumer E P . Demography, foreclosure, and crime: Assessing spatial heterogeneity in contemporary models of neighborhood crime rates[J]. Demographic Research, 2012,26:449-488.
doi: 10.4054/DemRes.2012.26.18 |
[23] |
Graif C, Sampson R J . Spatial heterogeneity in the effects of immigration and diversity on neighborhood homicide rates[J]. Homicide Studies, 2009,13(3):242.
doi: 10.1177/1088767909336728 pmid: 20671811 |
[24] |
David C Wheeler, Lance A Waller . Comparing spatially varying coefficient models: A case study examining violent crime rates and their relationships to alcohol outlets and illegal drug arrests crime rates and their relationships to alcohol outlets and illegal drug arrests[J]. Journal of Geographical Systems, 2009,11(1):1-22.
doi: 10.1007/s10109-008-0073-5 |
[25] |
Malczewski J, Poetz A . Residential burglaries and neighborhood socioeconomic context in London Ontario: Global and local regression analysis[J]. Professional Geographer, 2005,57(4):516-529.
doi: 10.1111/j.1467-9272.2005.00496.x |
[26] |
Macbeth E, Ariel B . Place-based statistical versus clinical predictions of crime hot spots and harm locations in Northern Ireland[J]. Justice Quarterly, 2019,36(1):93-126.
doi: 10.1080/07418825.2017.1360379 |
[27] | 杨刚斌, 柳林, 何深静 , 等. 广州门禁小区入室盗窃受害率与内部环境分析[J]. 人文地理, 2016,31(3):45-51. |
[ Yang G B, Liu L, He S J , et al. Analysis on the victimization rate and internal environment of burglary in guangzhou access control community[J]. Human geography, 2016,31(3):45-51. ] | |
[28] | 柳林, 杜方叶, 肖露子 , 等. 不同类型道路密度对公共空间盗窃犯罪率的影响——基于ZG市的实证研究[J]. 人文地理. 2017,32(6):32-38. |
[ Liu L, Du F Y, Xiao L Z , et al. The impact of different types of road density on the crime rate of public space thef: An empirical study based on ZG City[J]. Human Geography, 2017,32(6):32-38. ] | |
[29] |
宋广文, 肖露子, 周素红 , 等. 居民日常活动对扒窃警情时空格局的影响[J]. 地理学报, 2017,72(2):356-367.
doi: 10.11821/dlxb201702014 |
[ Song G W, Xiao L Z, Zhou S H , et al. The influence of residents' daily activities on the time and space pattern of plagiarism[J]. Journal of Geographical Sciences, 2017,72(2):356-367. ]
doi: 10.11821/dlxb201702014 |
|
[30] | 孙兆瑞 . 长春市城乡结合部建筑外环境防卫安全设计研究[D]. 长春:吉林建筑大学, 2017. |
[ Sun Z R . Study on the safety design of the exterior environment of the urban and rural joint zone in Changchun City[D]. Changchun: Jilin Universit, 2017. ] | |
[31] |
Breiman L . Random forests[J]. Machine Learning, 2001,45(1):5-32.
doi: 10.1023/A:1010933404324 |
[32] |
柳林, 刘文娟, 廖薇薇 , 等. 基于随机森林和时空核密度方法的不同周期犯罪热点预测对比[J]. 地理科学进展, 2018,37(6):761-771.
doi: 10.18306/dlkxjz.2018.06.003 |
[ Liu L, Liu W J, Liao W W , et al. Comparison of hotspot predictions of different periodic crimes based on random forest and space-time nuclear density method[J]. Progress in geography, 2018,37(6):761-771. ]
doi: 10.18306/dlkxjz.2018.06.003 |
|
[33] |
Chainey S, Tompson L, Uhlig S . The utility of hotspot mapping for predicting spatial patterns of crime[J]. Security Journal, 2008,21(1-2):4-28.
doi: 10.1057/palgrave.sj.8350066 |
[34] | Liu M, Lu T . A hybrid model of crime prediction[J]. Journal of Physics: Conference Series. DOI: 10.1088/1742-6596/1168/3/032031. |
[35] |
A G D. Amrhein C G, Desloges J R . Statistical analysis for geographers[J]. Journal of the American Statistical Association, 1999,94(446):654.
doi: 10.1371/journal.pone.0165726 pmid: 27832111 |
[36] |
徐冲, 柳林, 周素红 , 等. DP半岛街头抢劫案件的临近重复发生模式[J]. 地理研究, 2015,34(2):384-394.
doi: 10.11821/dlyj201502017 |
[ Xu C, Liu L, Zhou S H , et al. The recurrence pattern of street robbery cases on the DP peninsula[J]. Geographic research, 2015,34(2):384-394. ]
doi: 10.11821/dlyj201502017 |
[1] | 谢静, 陈楠, 林偲蔚. 基于地形音乐的地形定量分析与空间分异研究—以陕北黄土高原为例[J]. 地球信息科学学报, 2023, 25(5): 924-934. |
[2] | 林炫歆, 肖桂荣, 周侯伯. 顾及土地利用动态变化的滑坡易发性评估方法[J]. 地球信息科学学报, 2023, 25(5): 953-966. |
[3] | 谭德明, 饶佳艺. 深圳市都市型滨水空间活力影响因素分析[J]. 地球信息科学学报, 2023, 25(4): 809-822. |
[4] | 秦肖伟, 程博, 杨志平, 李林, 董文, 张新, 杨树文, 靳宗义, 薛庆. 基于时序遥感影像的西南山区地块尺度作物类型识别[J]. 地球信息科学学报, 2023, 25(3): 654-668. |
[5] | 黄帅元, 董有福, 李海鹏. 黄土高原区SRTM1 DEM高程误差校正模型构建及对比分析[J]. 地球信息科学学报, 2023, 25(3): 669-681. |
[6] | 潘雨飘, 赵翔, 王静, 张亦清, 刘耀林. 基于SMOTE-RF算法的村庄发展类型识别方法研究[J]. 地球信息科学学报, 2023, 25(1): 163-176. |
[7] | 杨洋, 邵哲平, 赵强, 潘家财, 胡雨, 梅强. 基于厦门港的海上交通事故地理空间分布及风险预测研究[J]. 地球信息科学学报, 2022, 24(9): 1676-1687. |
[8] | 吴亚楠, 郭长恩, 于东平, 段爱民, 刘玉, 董士伟, 单东方, 吴耐明, 李西灿. 基于不确定性分析的遥感分类空间分层及评估方法[J]. 地球信息科学学报, 2022, 24(9): 1803-1816. |
[9] | 聂祥琴, 陈瀚阅, 牛铮, 张黎明, 刘炜, 邢世和, 范协裕, 李家国. 基于时序影像的农业活动因子提取与闽西耕地SOC数字制图[J]. 地球信息科学学报, 2022, 24(9): 1835-1852. |
[10] | 张旭, 柳林, 周翰林, 岳瀚, 孙秋远. 基于贝叶斯逻辑回归模型研究百度街景图像微观建成环境因素对街面犯罪的影响[J]. 地球信息科学学报, 2022, 24(8): 1488-1501. |
[11] | 高位, 涂伟, 李明晓, 方碧宸, 陈栋胜, 黄正东, 贺彪. 基于影响因子动态更新的都市圈国土-人口协同模拟[J]. 地球信息科学学报, 2022, 24(8): 1502-1511. |
[12] | 侯玥, 徐成东, 刘伟, 殷倩. 气候变化情景下淮河上游流域氮排放预测研究[J]. 地球信息科学学报, 2022, 24(8): 1558-1574. |
[13] | 裴泽华, 葛淼, 李浩, 何进伟, 王聪霞. 基于随机森林模型的中国中老年人群HDL-C环境影响因素研究[J]. 地球信息科学学报, 2022, 24(7): 1286-1300. |
[14] | 郭逸飞, 吴田军, 骆剑承, 石含宁, 郜丽静. 基于不确定性迭代优化的山地植被遥感制图[J]. 地球信息科学学报, 2022, 24(7): 1406-1419. |
[15] | 高雪梅, 杨续超, 陈柏儒, 林琳. 基于随机森林模型的环渤海地区人口空间化模拟[J]. 地球信息科学学报, 2022, 24(6): 1150-1162. |
|