地球信息科学学报 ›› 2019, Vol. 21 ›› Issue (11): 1768-1778.doi: 10.12082/dqxxkx.2019.190518
收稿日期:
2019-09-12
修回日期:
2019-10-17
出版日期:
2019-11-25
发布日期:
2019-12-11
作者简介:
周岩(1992-),男,河南焦作人,博士生,研究方向为土地利用与全球变化遥感。E-mail: yanzhou152@cugb.edu.cn
基金资助:
Received:
2019-09-12
Revised:
2019-10-17
Online:
2019-11-25
Published:
2019-12-11
Contact:
DONG Jinwei
Supported by:
摘要:
江河湖泊等陆表水体在工农业生产、气候调节、生态系统维持等方面扮演着至关重要的角色。在气候变化与人类活动的作用下,陆表水体的空间分布始终在发生着变化,因而对其进行快速精准的时空变化监测对水资源管理与保护、未来气候变化预测等有着重要的意义。遥感技术为大范围水体动态监测提供了全新的技术手段,特别是在当前地球大数据背景下,水体提取算法不断改进,遥感数据源急剧增加,但缺乏对算法和数据演化过程的系统整理。鉴于此,本文对现有水体提取算法与遥感数据进行了综合梳理,归纳了单波段阈值法、多波段谱间关系法、水体指数与阈值法、支持向量机、随机森林、深度学习等常用算法的演变,以及遥感数据源由低(MODIS等)到中(Landsat等)和高(高分1/2号等)空间分辨率的发展过程,并在此基础上讨论了各算法与数据源在水体变化研究中的差异。此外,本文论述了数据处理平台由本地计算到高性能云计算平台(如谷歌地球引擎)的发展,云计算促进地表水变化研究由基于时间片段到基于时间序列连续过程分析的转变,以及云计算在大尺度范围的应用。最后,本文还对多源遥感数据融合与云计算平台的结合在地表水体连续变化监测中的应用进行了展望,并对不同类型水体提取的不确定性进行了讨论。
周岩, 董金玮. 陆表水体遥感监测研究进展[J]. 地球信息科学学报, 2019, 21(11): 1768-1778.DOI:10.12082/dqxxkx.2019.190518
ZHOU Yan, DONG Jinwei. Review on Monitoring Open Surface Water Body Using Remote Sensing[J]. Journal of Geo-information Science, 2019, 21(11): 1768-1778.DOI:10.12082/dqxxkx.2019.190518
表1
基于水体指数与阈值的水体提取算法总结
算法 | 水体指数 | ||
---|---|---|---|
TCWCrist[ | TCWCrist = 0.1509 × Bblue + 0.1973 × Bgreen + 0.3279 × Bred + 0.3406 × BNir - 0.7112 × BSWIR-1 - 0.4572 × BSWIR-2 | ||
NDWI[ | NDWI=(Bgreen - BNir) / (Bgreen + BNir) | ||
mNDWI[ | mNDWI=(Bgreen - BSWIR-1) / (Bgreen + BSWIR-1) | ||
SNN[ | Sum457 = BNir + BSWIR-1 + BSWIR-2 ND5723 = [(BSWIR-1 + BSWIR-2) - (Bgreen + Bred)] / [(BSWIR-1 + BSWIR-2) + (Bgreen + Bred)] ND571 = [(BSWIR-1 + BSWIR-2) - Bblue] / [(BSWIR-1 + BSWIR-2) + Bblue] | ||
AWEIsh[ | AWEIsh = Bblue + 2.5 × Bgreen - 1.5 × (BNir + BSWIR-1) - 0.25 × BSWIR-2 | ||
AWEInsh[ | AWEInsh = 4 × (Bgreen - BSWIR-1) - (0.25 × BNir + 2.75 × BSWIR-1) | ||
NDWI+ VI[ | EVI = 2.5 × (BNir - Bred) / (BNir + 6.0 × Bred - 7.5 × Bblue +1) NDVI = (BNir - Bred) / (BNir + Bred) LSWI = (BNir - BSWIR-1) / (BNir + BSWIR-1) mNDWI=(Bgreen - BSWIR-1) / (Bgreen + BSWIR-1) NDWI=(Bgreen - BNir) / (Bgreen + BNir) | ||
mNDWI+VI[ | |||
LSWI + VI[ | |||
算法 | 阈值选取 | 研究区 | 总体精度/% |
TCWCrist[ | TCWCrist> 0 | 北卡罗来纳州 | |
NDWI[ | NDWI > 0 | 内布拉斯加州 | |
mNDWI[ | mNDWI > 0 | 厦门市 | 99.85 |
SNN[ | (Sum457 < 0.188)或(ND5723 < -0.457)或(ND571 < 0.04)或(Sum457 < 0.269且ND5723 < -0.234且ND571 < 0.40) | 密苏里州 | 96.00 |
AWEIsh[ AWEInsh[ | AWEIsh > 0 AWEInsh > 0 | 丹麦、瑞士、新西兰、 埃塞俄比亚、南非 | 93.00~98.00 |
NDWI+ VI[ mNDWI+VI[ LSWI + VI[ | EVI<0.1且(NDWI > NDVI或NDWI > EVI) EVI<0.1且(mNDWI > NDVI或mNDWI > EVI) EVI<0.1且(LSWI> NDVI或LSWI > EVI) | 佛罗里达州、 拉斯维加斯 | 92.23~99.1294.34~99.5893.60~99.52 |
表2
常用遥感卫星用于水体提取的若干典型波段波长(μm)与空间分辨率(m)
蓝光 | 绿光 | 红光 | 近红外 | 短波红外-1 | 短波红外-2 | |||
---|---|---|---|---|---|---|---|---|
低空间分辨率传感器 | ||||||||
MODIS | 0.46~0.48/500 | 0.55~0.57/500 | 0.62~0.67/250 | 0.84~0.88/250 | 1.63~1.65/500 | 2.11~2.14/500 | ||
NOAA/AVHRR | 0.55~0.68/1100 | 0.73~1.10/1100 | ||||||
Suomi NPP-VIIRS | 0.49/750 | 0.56/750 | 0.64/370 | 0.87/370 | 1.61/750 | 2.25/750 | ||
MERIS | 0.49/300 | 0.56/300 | 0.67/300 | 0.87/300 | ||||
中等空间分辨率传感器 | ||||||||
Landsat 1-5 MSS | 0.50~0.60/80 | 0.60~0.70/80 | 0.70~0.80/80 | 0.80~1.10/80 | ||||
Landsat 4-5 TM | 0.45~0.52/30 | 0.52~0.60/30 | 0.63~0.69/30 | 0.76~0.90/30 | 1.55~1.75/30 | 2.08~2.35/30 | ||
Landsat 7 ETM+ | 0.45~0.52/30 | 0.52~0.60/30 | 0.63~0.69/30 | 0.76~0.90/30 | 1.55~1.75/30 | 2.08~2.35/30 | ||
Landsat 8 OLI | 0.45~0.51/30 | 0.53~0.59/30 | 0.64~0.67/30 | 0.85~0.88/30 | 1.57~1.65/30 | 2.11~2.29/30 | ||
Sentinel-2 MSI | 0.46~0.52/10 | 0.55~0.58/10 | 0.64~0.67/10 | 0.78~0.90/10 | 1.57~1.65/20 | 2.10~2.28/20 | ||
SPOT 1-3 | 0.50~0.59/20 | 0.61~0.68/20 | 0.79~0.89/20 | |||||
SPOT 4 | 0.50~0.59/20 | 0.61~0.68/20 | 0.78~0.89/20 | 1.58~1.78/20 | ||||
SPOT 5 | 0.49~0.61/10 | 0.61~0.68/10 | 0.78~0.89/10 | 1.58~1.78/20 | ||||
SPOT 6-7 | 0.46~0.53/6 | 0.53~0.59/6 | 0.63~0.70/6 | 0.76~0.89/6 | ||||
ASTER | 0.52~0.60/15 | 0.63~0.69/15 | 0.76~0.86/15 | 1.60~1.70/30 | 2.15~2.43/30 | |||
HJ-1A/B | 0.43~0.52/30 | 0.52~0.60/30 | 0.63~0.69/30 | 0.76~0.90/30 | 1.55~1.75/150 | |||
高空间分辨率传感器 | ||||||||
RapidEye | 0.44~0.51/5 | 0.52~0.59/5 | 0.63~0.69/5 | 0.76~0.85/5 | ||||
IKONOS | 0.45~0.53/4 | 0.52~0.61/4 | 0.64~0.72/4 | 0.77~0.88/4 | ||||
Quickbird | 0.45~0.52/2.44~2.88 | 0.52~0.60/2.44~2.88 | 0.63~0.69/2.44~2.88 | 0.76~0.90/2.44~2.88 | ||||
Worldview 2 | 0.45~0.51/0.46 | 0.51~0.58/0.46 | 0.63~0.69/0.46 | 0.77~0.90/0.46 | ||||
Worldview 3 | 0.45~0.51/0.31 | 0.51~0.58/0.31 | 0.63~0.69/0.31 | 0.77~0.90/0.31 | 1.64~1.68/0.31 | 2.15~2.29/0.31 | ||
Worldview 4 | 0.45~0.51/0.31 | 0.51~0.58/0.31 | 0.66~0.69/0.31 | 0.78~0.92/0.31 | 1.64~1.68/0.31 | 2.15~2.37/0.31 | ||
高分1号 | 0.45~0.52/8 | 0.52~0.59/8 | 0.63~0.69/8 | 0.77~0.89/8 | ||||
高分2号 | 0.45~0.52/4 | 0.52~0.59/4 | 0.63~0.69/4 | 0.77~0.89/4 | ||||
资源3号 | 0.45~0.52/6 | 0.52~0.59/6 | 0.63~0.69/6 | 0.77~0.89/6 |
表3
全球地表水体覆盖数据集
数据产品 | 空间范围 | 空间分辨率 | 时间跨度 |
---|---|---|---|
Global Inundation Extent from Multi-Satellites (GIEMS)[ | 全球 | 0.25 ° | 1993-2007 |
Global Raster Water Mask at 250 meter Spatial Resolution[ | 全球 | 250 m | 2000-2002 |
GLOWABO[ | 全球 | 30 m | 2000 |
Global Land 30-water[ | 全球 | 30 m | 2000, 2010 |
Global 3 arc-second Water Body Map (G3WBM)[ | 全球 | 90 m | 2010 |
Global water cover map in 2013[ | 全球 | 500 m | 2013 |
GLCF GIW[ | 全球 | 30 m | 2000 |
Joint Research Centre (JRC)[ | 全球 | 30 m | 1984-2015 |
500 m 8-day Water Classification Maps[ | 全球 | 500 m | 2000-2015 |
500 m Resolution Daily Global Surface Water Change Database[ | 全球 | 500 m | 2001-2016 |
[1] |
饶萍, 王建力 . 最优分区与最优指数联合的水体信息提取[J]. 地球信息科学学报, 2017,19(5):702-712.
doi: 10.3724/SP.J.1047.2017.00702 |
[ Rao P, Wang J L . Water extraction based on the optimal subregion and the optimal indexes combined[J]. Journal of Geo-information Science, 2017,19(5):702-712. ]
doi: 10.3724/SP.J.1047.2017.00702 |
|
[2] |
梁立, 刘庆生, 刘高焕 等. 基于遥感影像的海岸线提取方法综述[J]. 地球信息科学学报, 2018,20(12):1745-1755.
doi: 10.12082/dqxxkx.2018.180152 |
[ Liang L, Liu Q S, Liu G H , et al. Review of coastline extraction methods based on remote sensing images[J]. Journal of Geo-information Science, 2018,20(12):1745-1755. ]
doi: 10.12082/dqxxkx.2018.180152 |
|
[3] | 李艳华, 丁建丽, 闫人华 . 基于国产GF-1遥感影像的山区细小水体提取方法研究[J]. 资源科学, 2015,37(2):408-416. |
[ Li Y H, Ding J L, Yan R H . Extraction of small river information based on China-made GF-1 remote sense images[J]. Resources Science, 2015,37(2):408-416. ] | |
[4] | 张超, 彭道黎 . 基于遥感的水体信息提取技术研究进展[J]. 河南农业科学, 2013,42(6):16-20. |
[ Zhang C, Peng D L . Research advance on technology for extracting water information based on remote sensing[J]. Journal of Henan Agricultural Sciences, 2013,42(6):16-20. ] | |
[5] | 叶庆华, 程维明, 赵永利 等. 青藏高原冰川变化遥感监测研究综述[J]. 地球信息科学学报, 2016,18(7):920-930. |
[ Ye Q H, Cheng W M, Zhao Y L , et al. A review on the research of glacier changes on the Tibetan Plateau by remote sensing technologies[J]. Journal of Geo-information Science, 2016,18(7):920-930. ] | |
[6] |
Huang C, Chen Y, Wu J , et al. An evaluation of Suomi NPP-VIIRS data for surface water detection[J]. Remote Sensing Letters, 2015,6(2):155-164.
doi: 10.1080/2150704X.2015.1017664 |
[7] |
Huang C, Chen Y, Zhang S , et al. Detecting, extracting, and monitoring surface water from space using optical sensors: A review[J]. Reviews of Geophysics, 2018,56:333-360.
doi: 10.1029/2018RG000598 |
[8] | 李丹, 吴保生, 陈博伟 等. 基于卫星遥感的水体信息提取研究进展与展望[J]. 清华大学学报, 2019,59(22):1-25. |
[ Li D, Wu B S, Chen B W . Review of water body information extraction based on satellite remote sensing[J]. Journal of Tsinghua University, 2019,59(22):1-25. ] | |
[9] | 陈前, 郑利娟, 李小娟 等. 基于深度学习的高分遥感影像水体提取模型研究[J]. 地理与地理信息科学, 2019,35(4):43-49. |
[ Chen Q, Zheng L J, Li X J . Water body extraction from high-resolution satellite remote sensing images based on deep learning[J]. Geography and Geo-information Science, 2019,35(4):43-49. ] | |
[10] | 林楚彬, 李少青 . Landsat数据水体自动提取研究进展[J]. 自动化技术与应用, 2015,34(2):1-4. |
[ Lin C B, Li S Q . Research progress of water-body automatic extraction methods in landsat data[J]. Techniques of Automation and Applications, 2015,34(2):1-4. ] | |
[11] |
Pekel J F, Cottam A, Gorelick N , et al. High-resolution mapping of global surface water and its long-term changes[J]. Nature, 2016,540(7633):418-422.
doi: 10.1038/nature20584 pmid: 27926733 |
[12] |
Bartolucci L A, Robinson B F, Silva L F . Field measurements of the spectral response of natural waters[J]. Photogrammetric Engineering and Remote Sensing, 1977,43(5):585-598.
doi: 10.3389/fpls.2019.00814 pmid: 31297124 |
[13] | R J J . Introductory digital image processing a remote sensing perspective[M]. New Jersey:Prentice Hall, 2004. |
[14] | Kokaly R F, Clark R N, Swayze G A , et al. USGS Spectral Library Version 7[M]. Reston:U.S. Geological Survey, 2017. |
[15] | 陈文倩, 丁建丽, 李艳华 , 等. 基于国产GF-1遥感影像的水体提取方法[J]. 资源科学, 2015,37(6):1166-1172. |
[ Chen W Q, Ding J L, Li Y H , et al. Extraction of water information based on China-made GF-1 remote sense image[J]. Resources Science, 2015,37(6):1166-1172. ] | |
[16] | 王永丽, 宋希磊 . 基于ETM+数据的水体信息提取[J].绿色科技, 2017(10):208-210. |
[ Wang Y L, Song X L . Extraction of water body information based on ETM+ Data[J]. Journal of Green Science and Technology, 2017(10):208-210. ] | |
[17] | 周成虎, 骆剑承, 杨晓梅 , 等. 遥感影像地学理解与分析[M]. 北京: 科学出版社, 1999. |
[ Zhou C H, Luo J C, Yang X M , et al. Geological understanding and analysis of remote sensing images[M]. Beijing: Science Press, 1999. ] | |
[18] | 张明华 . 用改进的谱间关系模型提取极高山地区水体信息[J]. 地理与地理信息科学, 2008,24(2):14-16. |
[ Zhang M H . Extracting water-body information with improved model of spectal relationship in a higher mountain area[J]. Geography and Geo-information Science, 2008,24(2):14-16. ] | |
[19] | Crist E P . A TM tasseled cap equivalent transformation for reflectance factor data[J]. Remote Senssing of Environment, 1985,17(3):301-306. |
[20] | Crist E P, Cicone R C . A physically-based transformation of thematic mapper data-the TM tasseled cap[J]. IEEE Transactions on Geoscience and Remote Sensing, 1984,22(3):256-263. |
[21] |
McFeeters S K . The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features[J]. International Journal of Remote Sensing, 1996,17(7):1425-1432.
doi: 10.1080/01431169608948714 |
[22] |
Xu H Q . Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery[J]. International Journal of Remote Sensing, 2006,27(14):3025-3033.
doi: 10.1080/01431160600589179 |
[23] |
徐涵秋 . 利用改进的归一化差异水体指数(MNDWI)提取水体信息的研究[J]. 遥感学报, 2005,9(5):589-595.
doi: 10.11834/jrs.20050586 |
[ Xu H Q . A study on information extraction of water body with the Modified Normalized Difference Water Index (MNDWI)[J]. Journal of Remote Sensing, 2005,9(5):79-85. ]
doi: 10.11834/jrs.20050586 |
|
[24] |
车向红, 冯敏, 姜浩 等. 2000-2013年青藏高原湖泊面积MODIS遥感监测分析[J]. 地球信息科学学报, 2015,17(1):99-107.
doi: 10.3724/SP.J.1047.2015.00099 |
[ Che X H, Feng M, Jiang H , et al. Detection and analysis of Qinghai-Tibet Plateau lake area from 2000 to 2013[J]. Journal of Geo-information Science, 2015,17(1):99-107. ]
doi: 10.3724/SP.J.1047.2015.00099 |
|
[25] | Beeri O, Phillips R L . Tracking palustrine water seasonal and annual variability in agricultural wetland landscapes using Landsat from 1997 to 2005[J]. Global Change Biology, 2007,13(4):897-912. |
[26] | Al-Khudhairy D H A, Leemhuis C, Hoffmann V , et al. Monitoring wetland ditch water levels using landsat TM and ground-based measurements[J]. Photogrammetric Engineering and Remote Sensing, 2002,68(8):809-818. |
[27] |
Feyisa G L, Meilby H, Fensholt R , et al. Automated water extraction index: A new technique for surface water mapping using Landsat imagery[J]. Remote Sensing Environment, 2014,140:23-35.
doi: 10.1016/j.rse.2013.08.029 |
[28] | Menarguez M A . Global water body mapping from 1984 to 2015 using global high resolution multispectral satellite imagery[D]. Norman: University of Oklahoma, 2015. |
[29] |
杨浩, 孟娜, 王婧 , 等. 基于支持向量机的京津冀城市群热环境时空形态模拟[J]. 地球信息科学学报, 2019,21(2):190-200.
doi: 10.12082/dqxxkx.2019.180271 |
[ Yang H, Meng N, Wang J , et al. Spatial- temporal morphology simulation of Beijing-Tianjin- Hebei urban agglomeration thermal environment based on Support Vector Machine[J]. Journal of Geo-information Science, 2019,21(2):190-200.]
doi: 10.12082/dqxxkx.2019.180271 |
|
[30] | 李楠, 朱秀芳, 潘耀忠 , 等. 人工蜂群算法优化的SVM遥感影像分类[J]. 遥感学报, 2018,22(4):29-39. |
[ Li N, Zhu X F, Pan Y Z , et al. Optimized SVM based on artificial bee colony algorithm for remote sensing image classification[J]. Journal of Remote Sensing, 2018,22(4):559-569. ] | |
[31] |
Breiman L . Random forests[J]. Machine Learning, 2001,45(1):5-32.
doi: 10.1023/A:1010933404324 |
[32] |
Breiman L . Bagging predictors[J]. Machine Learning, 1996,24(2):123-140.
doi: 10.1016/j.envint.2019.104934 pmid: 31229871 |
[33] |
Ho T K . The random subspace method for constructing decision forests[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998,20(8):832-844.
doi: 10.1109/34.709601 |
[34] | 闫东阳 . 基于对象的随机森林遥感分类方法优化[D]. 北京:中国地质大学(北京), 2018. |
[ Yan D Y . The optimizing of object-based random forest classification in remote sensing[D]. Beijing: China University of Geosciences (Beijing), 2018. ] | |
[35] | 饶品增, 蒋卫国, 王晓雅 等. 基于MODIS数据的洪涝灾害分析——以2017年洞庭湖区洪水为例[J]. 灾害学, 2019,34(1):203-207. |
[ Rao P Z, Jiang W G, Wang X Y , et al. Flood disaster analysis based on MODIS data-Taking the flood in dongting lake area in 2017 as an example[J]. Journal of Catastrophology, 2019,34(1):203-207. ] | |
[36] | 赵书荟, 段会川, 高帅 , 等. 基于随机森林的MODIS遥感影像水体分类研究[J]. 山东师范大学学报, 2018,33(1):19-25. |
[ Zhao S H, Duan H C, Gao S , et al. Water classification of modis remote sensing image based on random forests[J]. Journal of Shandong Normal University, 2018,33(1):19-25. ] | |
[37] |
Hinton G E, Salakhutdinov R R . Reducing the dimensionality of data with neural networks[J]. Science, 2006,313(5786):504-507.
doi: 10.1126/science.1127647 pmid: 16873662 |
[38] |
Barton I J, Bathols J M . Monitoring floods with Avhrr[J]. Remote Sensing of Environment, 1989,30(1):89-94.
doi: 10.1007/s10661-012-2675-0 pmid: 22572801 |
[39] | 赵德刚, 占玉林, 刘成林 , 等. 面向土地覆盖分类的MODIS影像融合研究[J]. 遥感技术与应用, 2009,24(6):827-831. |
[ Zhao D G, Zhan Y L, Liu C L , et al. MODIS Image Fusion for Land Cover Classification[J]. Remote Sensing Technology and Application, 2009,24(6):827-831. ] | |
[40] | 龚燃 . 哨兵-2A光学成像卫星发射升空[J].国际太空, 2015(8):36-40. |
[ Gong R . Sentinel-2A Satellite Launches[J]. Space International, 2015(8):36-40. ] | |
[41] |
Yao F F, Wang C, Dong D , et al. High-resolution mapping of urban surface water using ZY-3 multi-spectral imagery[J]. Remote Sensing, 2015,7(9):12336-12355.
doi: 10.3390/rs70912336 |
[42] | Zhang H B, Li J S, Xiang N P , et al. An automatic method of monitoring water bodies based on GF-1 data[J]. Ocean Remote Sensing and Monitoring from Space, 2014,9261:926103. |
[43] |
沈占锋, 李均力, 于新菊 . 基于协同计算的白洋淀湿地时序水体信息提取[J]. 地球信息科学学报, 2016,18(5):690-698.
doi: 10.3724/SP.J.1047.2016.00690 |
[ Shen Z F, Li J L, Yu X J . Water information extraction of Baiyangdian wet land based on the collaborative computing method[J]. Journal of Geo-information Science, 2016,18(5):690-698. ]
doi: 10.3724/SP.J.1047.2016.00690 |
|
[44] |
Dong J W, Metternicht G, Hostert P , et al. Remote sensing and geospatial technologies in support of a normative land system science: status and prospects[J]. Current Opinion in Environmental Sustainability, 2019,38:44-52.
doi: 10.1016/j.cosust.2019.05.003 |
[45] |
Hansen M C, Potapov P V, Moore R , et al. High-resolution global maps of 21st-century forest cover change[J]. Science, 2013,342(6160):850-853.
doi: 10.1126/science.1244693 |
[46] |
Tao S, Fang J, Zhao X , et al. Rapid loss of lakes on the Mongolian Plateau[J]. Proceedings of the national academy of sciences of the united states of America, 2015,112(7):2281-2286.
doi: 10.1073/pnas.1411748112 pmid: 25646423 |
[47] |
Zhang G, Yao T, Piao S , et al. Extensive and drastically different alpine lake changes on Asia's high plateaus during the past four decades[J]. Geophysical Research Letters, 2017,44(1):252-260.
doi: 10.1002/2016GL072033 |
[48] |
Zou Z H, Xiao X M, Dong J W , et al. Divergent trends of open-surface water body area in the contiguous United States from 1984 to 2016[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018,115(15):3810-3815.
doi: 10.1073/pnas.1719275115 pmid: 29581291 |
[49] | Ji L Y, Gong P, Wang J , et al. Construction of the 500 m Resolution Daily Global Surface Water Change Database (2001-2016)[J]. Water Resources Research, 2018,54(12):10270-10292. |
[50] |
Zhou Y, Dong J, Xiao X , et al. Continuous monitoring of lake dynamics on the Mongolian Plateau using all available Landsat imagery and Google Earth Engine[J]. Science of the Total Environment, 2019,689:366-380.
doi: 10.1016/j.scitotenv.2019.06.341 pmid: 31277004 |
[51] |
Prigent C, Papa F, Aires F , et al. Global inundation dynamics inferred from multiple satellite observations, 1993-2000[J]. Journal of Geophysical Research-Atmospheres, 2007,112:D12107.
doi: 10.1029/2006JD007847 |
[52] |
Carroll M L, Townshend J R, DiMiceli C M , et al. A new global raster water mask at 250 m resolution[J]. International Journal of Digital Earth, 2009,2(4):291-308.
doi: 10.1080/17538940902951401 |
[53] |
Verpoorter C, Kutser T, Seekell D A , et al. A global inventory of lakes based on high-resolution satellite imagery. Geophysical Research Letters, 2014,41(18):6396-6402.
doi: 10.1002/2014GL060641 |
[54] |
Liao A P, Chen L J, Chen J , et al. High-resolution remote sensing mapping of global land water[J]. Science China-Earth Sciences, 2014,57(10):2305-2316.
doi: 10.1007/s11430-014-4918-0 |
[55] |
Yamazaki D, Trigg M A, Ikeshima D . Development of a global similar to 90 m water body map using multi-temporal Landsat images[J]. Remote Sensing of Environment, 2015,171:337-351.
doi: 10.1016/j.rse.2015.10.014 |
[56] |
Sharma R C, Tateishi R, Hara K , et al. Developing Superfine Water Index (SWI) for global water cover mapping using MODIS Data[J]. Remote Sensing, 2015,7(10):13807-13841.
doi: 10.3390/rs71013807 |
[57] |
Feng M, Sexton J O, Channan S , et al. A global, high-resolution (30-m) inland water body dataset for 2000: First results of a topographic-spectral classification algorithm[J]. International Journal of Digital Earth, 2016,9(2):113-133.
doi: 10.1080/17538947.2015.1026420 |
[58] |
Khandelwal A, Karpatne A, Marlier M E , et al. An approach for global monitoring of surface water extent variations in reservoirs using MODIS data[J]. Remote Sensing of Environment, 2017,202:113-128.
doi: 10.1016/j.rse.2017.05.039 |
[59] |
Fisher A, Flood N, Danaher T . Comparing Landsat water index methods for automated water classification in eastern Australia[J]. Remote Sensing of Environment, 2016,175:167-182.
doi: 10.1016/j.rse.2015.12.055 |
[60] |
Zhou Y, Dong J W, Liu J Y , et al. Are there sufficient landsat observations for retrospective and continuous monitoring of land cover changes in China?[J]. Remote Sensing, 2019,11(15):1808.
doi: 10.3390/rs11151808 |
[61] |
Griffiths P, Nendel C, Hostert P . Intra-annual reflectance composites from Sentinel-2 and Landsat for national-scale crop and land cover mapping[J]. Remote Sensing of Environment, 2019,220:135-151.
doi: 10.1016/j.rse.2018.10.031 |
[1] | 王振娟, 花卫华, 刘修国, 郑鹏, 肖旖旎, 闻龙. 一种消除三维地质模型边界裂缝的锁边LOD方法[J]. 地球信息科学学报, 2023, 25(5): 967-981. |
[2] | 庄汉宸, 张亚茹, 王文轩, 张书亮. 顾及轨迹还原与分类的渣土车作业行为提取方法[J]. 地球信息科学学报, 2023, 25(4): 754-765. |
[3] | 万江琴, 费腾. 基于街景图像的“三生空间”识别方法研究[J]. 地球信息科学学报, 2023, 25(4): 838-851. |
[4] | 俞钦平, 吴振华, 王亚蓓. 一种耦合进化算法与FLUS模型的土地利用变化模拟模型[J]. 地球信息科学学报, 2023, 25(3): 510-528. |
[5] | 徐繁树, 王保云, 韩俊. 一种沟谷型潜在泥石流危险性评价方法:基于多源数据融合的卷积神经网络[J]. 地球信息科学学报, 2023, 25(3): 588-605. |
[6] | 巫磊, 吴文挺. GEE平台下结合滤波算法和植被物候特征的互花米草遥感提取最优时间窗口确定[J]. 地球信息科学学报, 2023, 25(3): 606-624. |
[7] | 李可欣, 郭健, 王宇君, 李宗明, 缪坤, 陈辉. 基于SAR和AIS的角度最近邻数据关联方法[J]. 地球信息科学学报, 2023, 25(1): 131-141. |
[8] | 高培超, 王昊煜, 宋长青, 程昌秀, 沈石. 多目标优化NSGA系列算法与地理决策:原理、现状与展望[J]. 地球信息科学学报, 2023, 25(1): 25-39. |
[9] | 伍跃飞, 李建微, 毕胜, 朱馨, 王前锋. 面向山地徒步应急救援路径规划的改进蚁群算法研究[J]. 地球信息科学学报, 2023, 25(1): 90-101. |
[10] | 张新宇, 郭文强, 王婧贇, 杨炳栋. 基于多源海事数据的大型船舶精细化分段乘潮研究[J]. 地球信息科学学报, 2022, 24(9): 1688-1700. |
[11] | 冯世盛, 徐青, 朱新铭, 邹霓霄, 李帅. 基于地形数据的长距离越野路径快速规划方法研究[J]. 地球信息科学学报, 2022, 24(9): 1742-1754. |
[12] | 张娜, 王磊, 殷楠. 结合质心Voronoi图优化的三维Douglas-Peucker地形简化算法[J]. 地球信息科学学报, 2022, 24(7): 1245-1253. |
[13] | 魏海涛, 杜云艳, 张佳丽, 孙璐瑶. 基于CNN的空间数据自适应切分算法[J]. 地球信息科学学报, 2022, 24(6): 1099-1106. |
[14] | 秦奇, 成升魁, 陈晓鹏, 周强. 基于Hofstede数据的国家间文化亲疏程度测度与全球文化圈划分[J]. 地球信息科学学报, 2022, 24(6): 1139-1149. |
[15] | 姚锦一, 王卷乐, 严欣荣, 魏海硕, Altansukh Ochir, Davaadorj Davaasuren. 基于深度神经网络的蒙古国色楞格河流域水体信息提取[J]. 地球信息科学学报, 2022, 24(5): 1009-1017. |
|