地球信息科学学报 ›› 2020, Vol. 22 ›› Issue (8): 1725-1734.doi: 10.12082/dqxxkx.2020.190316
收稿日期:
2019-06-20
修回日期:
2019-10-31
出版日期:
2020-08-25
发布日期:
2020-10-25
通讯作者:
江洪
E-mail:jzkkll@qq.com;jh910@fzu.edu.cn
作者简介:
蒋世豪(1994— ),男,河南开封人,硕士生,研究方向为遥感技术与应用。E-mail:基金资助:
JIANG Shihao(), JIANG Hong*(
), CHEN Hui
Received:
2019-06-20
Revised:
2019-10-31
Online:
2020-08-25
Published:
2020-10-25
Contact:
JIANG Hong
E-mail:jzkkll@qq.com;jh910@fzu.edu.cn
Supported by:
摘要:
植物吸收性光合有效辐射分量(FPAR)的遥感反演是生态环境领域的核心研究内容之一,但在复杂地形山区,其估算精度严重受到地形效应的影响(包括本影与落影)。本文利用能够消除地形阴影影响的阴影消除植被指数(SEVI)对山区遥感影像进行FPAR反演,并分别与基于不同影像预处理程度计算的归一化植被指数(NDVI)、比值型植被指数(RVI)反演的FPAR做对比分析,以评估复杂山区反演FPAR存在的地形效应。结果表明:在不做地形校正的情况下,基于NDVI与RVI反演FPAR会使得本影及落影区域的值远小于非阴影区域的值,它们的相对误差均大于70%;基于C校正后的NDVI与RVI反演FPAR可以较好地校正本影区域,相对误差降至约6.974%,但落影处的校正效果不明显,相对误差约为48.133 %;而基于SEVI反演FPAR无需DEM数据的支持,可以达到经FLAASH+C组合校正后NDVI与RVI反演FPAR相似的结果,且能改善落影区域的地形校正效果,相对误差降至约2.730%。
蒋世豪, 江洪, 陈慧. 基于SEVI的复杂地形山区植被FPAR遥感反演与地形效应评估[J]. 地球信息科学学报, 2020, 22(8): 1725-1734.DOI:10.12082/dqxxkx.2020.190316
JIANG Shihao, JIANG Hong, CHEN Hui. Vegetation FPAR Retrieval based on SEVI in Rugged Terrain and Terrain Effects Assessment[J]. Journal of Geo-information Science, 2020, 22(8): 1725-1734.DOI:10.12082/dqxxkx.2020.190316
[1] | Yan K, Park T, Yan G, et al. Evaluation of MODIS LAI/FPAR Product Collection 6. Part 2: Validation and Intercomparison[J]. Remote Sensing, 2016,8(6):460. |
[2] | Turner D P, Ritts W D, Wharton S, et al. Assessing FPAR source and parameter optimization scheme in application of a diagnostic carbon flux model[J]. Remote Sensing of Environment, 2015,113(7):1529-1539. |
[3] | Majasalmi, Titta, Rautiainen, et al. Modeled and measured FPAR in a boreal forest: Validation and application of a new model[J]. Agricultural & Forest Meteorology, 2014, 189-190(189-190):118-124. |
[4] | Chen C, Knyazikhin Y, Park T, et al. Prototyping of LAI and FPAR retrievals from MODIS Multi-Angle Implementation of Atmospheric Correction (MAIAC) data[J]. Remote Sensing, 2017,9(4):370. |
[5] | Cheng, Yenben, Zhang Q, et al. Impacts of light use efficiency and FPAR parameterization on gross primary production modeling[J]. Agricultural & Forest Meteorology, 2014, 189-190(6):187-197. |
[6] | Peng D, Bing Z, Liu L, et al. Characteristics and drivers of global NDVI-based FPAR from 1982 to 2006[J]. Global Biogeochemical Cycles, 2012,26(3):GB3015. |
[7] | 周晓东, 朱启疆, 王锦地, 等. 夏玉米冠层内PAR截获及FPAR与LAI的关系[J]. 自然资源学报, 2002,17(1):110-116. |
[ Zhou X D, Zhu Q J, Wang J D, et al. Interception of PAR, relationship between FPAR and LAI in summer maize canopy[J]. Journal of Natural Resources, 2002,17(1):110-116. ] | |
[8] | Liang S, Hou X, Sui X, et al. Deciduous broadleaf forests green FPAR and its relationship with spectral vegetation indices[C]. International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), Shanghai, China, 2017. |
[9] | Chen X, Meng J, Wu B, et al. Monitoring corn FPAR based on HJ-1 CCD[J]. Transactions of the Chinese Society of Agricultural Engineering, 2010,26(s1):241-245. |
[10] | 董恒, 何枋键, 张城芳. 基于辐射传输模型的FPAR_(green)与几种植被指数的关系研究[J]. 华中农业大学学报, 2016,35(4):70-75. |
[ Dong H, He F J, Zhang C F. Relationship between FPAR green and several vegetation indices based on radiative transfer model[J]. Journal of Huazhong Agricultural University, 2016,35(4):70-75. ] | |
[11] | 陈雪洋, 蒙继华, 吴炳方, 等. 基于HJ-1 CCD的夏玉米FPAR遥感监测模型[J]. 农业工程学报, 2010,26(S1):241-245. |
[ Chen X Y, Meng J H, Wu B F, et al. Monitoring corn FPAR based on HJ-1 CCD[J]. Transactions of the CSAE, 2010,26(s1):241-245. ] | |
[12] | 董泰锋, 蒙继华, 吴炳方. 基于遥感的光合有效辐射吸收比率(FPAR)估算方法综述[J]. 生态学报, 2012,32(22):7190-7201. |
[ Dong T F, Meng J H, Wu B F. Overview on methods of deriving fraction of absorbed photosynthetically active radiation (FPAR) using remote sensing[J]. Acta Ecologica Sinica, 2012,32(22):7190-7201. ] | |
[13] | 吴炳方, 曾源, 黄进良. 遥感提取植物生理参数LAI/FPAR的研究进展与应用[J]. 地球科学进展, 2004,19(4):585-590. |
[ Wu B F, Zeng Y, Huang J L. Overview of LAI/FPAR retrieval from remotely sensed data[J]. Advances in Earth Science, 2004,19(4):585-590. ] | |
[14] | 江洪, 何国金, 黄海明, 等. 基于波段比模型的地形调节植被指数组合算法构建与验证[J]. 农业工程学报, 2017,33(5):156-161. |
[ Jiang H, He G J, Huang H M, et al. Construction and validation of combination model of topography-adjusted vegetation index based on band-ratio model[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017,33(5):156-161. ] | |
[15] | 陈趁新, 胡昌苗, 霍连志, 等. Landsat TM数据不同辐射校正方法对土地覆盖遥感分类的影响[J]. 遥感学报, 2014,18(2):320-334. |
[ Chen C X, Hu C M, Huo L Z, et al. Effect of different radiation correction methods of Landsat TM data on land-cover remote sensing classification[J]. Journal of Remote Sensing, 2014,18(2):320-334. ] | |
[16] | 孔金玲, 杨晶, 孙晓明, 等. 多光谱遥感影像大气校正与悬沙浓度反演——以曹妃甸近岸海域为例[J]. 国土资源遥感, 2016,28(3):130-137. |
[ Kong J L, Yang J, Sun X M, et al. Atmospheric correction and suspended sediment concentration retrieval based on multi-spectral remote sensing images: A case study of Caofeidian offshore area[J]. Remote Sensing for Land & Resources, 2016,28(3):130-137. ] | |
[17] | 温素馨, 韦玉春, 汪美会. TM遥感图像FLAASH大气校正异常值的改正[J]. 测绘科学, 2017,42(7):165-171. |
[ Wen S X, Wei Y C, Wang M H. Improvement of outlier in TM image after FLAASH atmospheric correction[J]. Science of Surveying and Mapping, 2017,42(7):165-171. ] | |
[18] | 陈建珍, 何超, 寇卫利. 高山峡谷地区遥感图像地形校正[J]. 山地学报, 2016,34(5):623-631. |
[ Chen J Z, He C, Dou W L. Topographic correction of remote sensing image at high mountain and gorge regions[J]. Journal of Mountain Science, 2016,34(5):623-631. ] | |
[19] | Vázquez-Jiménez R, Id R, Romero-Calcerrada, et al. Topographic Correction to Landsat Imagery through Slope Classification by Applying the SCS + C Method in Mountainous Forest Areas[J]. International Journal of Geo-information, 2017,6(287):1-16. |
[20] | 廖钰冰, 陈新芳, 陈喜, 等. 地形校正对叶面积指数遥感估算的影响[J]. 遥感信息, 2011(5):47-51. |
[ Liao Y B, Chen X F, Chen X, et al. Effect of topographic correction on the estimation of leaf area index based on landsat TM[J]. Remote Sensing Information, 2011(5):47-51. ] | |
[21] | 王飒, 李熙, 张奇, 等. Landsat影像地形校正方法的适用性分析[J]. 华中师范大学学报(自然科学版), 2013,47(4):571-577. |
[ Wang F, Li X, Zhang Q, et al. Analysis on the applicability of the topographic correction models for Landsat images[J]. Journal of Central China Normal University (Natural Sciences), 2013,47(4):571-577. ] | |
[22] | 林起楠, 黄华国, 陈玲, 等. 陡峭山区影像的半经验地形校正[J]. 遥感学报, 2017(5):776-784. |
[ Lin Q N, Huang H G, Chen L, et al. Topographic correction method for steep mountain terrain images[J]. Journal of Remote Sensing, 2017(5):776-784. ] | |
[23] | 吴志杰, 何国金, 黄绍霖, 等. 南方丘陵区植被覆盖度遥感估算的地形效应评估[J]. 遥感学报, 2017,20(1):159-167. |
[ Wu Z J, He G J, Huang S L, et al. Terrain effects assessment on remotely sensed fractional vegetation cover in hilly area of southern China[J]. Journal of Remote Sensing. 2017,20(1):159-167. ] | |
[24] | 吴志杰, 何国金, 王猛猛, 等. 南方丘陵区植被覆盖度遥感估算与时空变化研究——以福建省永定县为例[J]. 遥感技术与应用, 2016,31(6):1201-1208. |
[ Wu Z J, He G J, Wang M M, et al. Estimation of fractional vegetation cover and its spatial-temporal variation in hilly area of southeastern China: Yongding county, Fujian province[J]. Remote Sensing Technology and Application, 2016,31(6):1201-1208. ] | |
[25] | Jiao W, Chen Y, Li W, et al. Estimation of net primary productivity and its driving factors in the Ili River Valley, China[J]. Journal of Arid Land, 2018,5:781-793. |
[26] | 管小彬, 沈焕锋, 甘文霞, 等. 基于Landsat TM/ETM+影像的武汉市冬季NPP估算及其时空变化分析[J]. 遥感技术与应用, 2015,30(5):884-890. |
[ Guan X B, Shen H F, Gan W X, et al. Estimation and spatiotemporal analysis of winter NPP in wuhan based on landsat TM/ETM+ images[J]. Remote Sensing Technology and Application, 2015,30(5):884-890. ] | |
[27] | 尹锴, 田亦陈, 袁超, 等. 基于CASA模型的北京植被NPP时空格局及其因子解释[J]. 国土资源遥感, 2015,27(1):133-139. |
[ Yin K, Tian Y C, Yuan C, et al. NPP spatial and temporal pattern of vegetation in Beijing and its factor explanation based on CASA model[J]. Remote Sensing for Land & Resources, 2015,27(1):133-139. ] | |
[28] | 张时煌, 彭公炳, 黄玫. 基于遥感与地理信息系统支持下的地表植被特征参数反演[J]. 气候与环境研究, 2004,9(1):80-91. |
[ Zhang S H, Peng G B, Huang Z. Derivation of earth surface parameters in vegetation properties supported by GIS techniques[J]. Climatic and Environmental Research, 2004,9(1):80-91. ] | |
[29] | 袁烨城, 李宝林, 王双, 等. 基于GF-1/WFV数据的三江源草地月度NPP反演研究[J]. 地球信息科学学报, 2018,20(12):1799-1809. |
[ Yuan Y C, Li B L, Wang S, et al. Monthly net primary production estimation of grassland in the Three-River Headwater Region using GF-1/WFV data[J]. Journal of Geo-information Science, 2018,20(12):1799-1809. ] | |
[30] | Jiang H, Wang S, Cao X, et al. A shadow- eliminated vegetation index (SEVI) for removal of self and cast shadow effects on vegetation in rugged terrains[J]. International Journal of Digital Earth, 2019,12(9):1013-1029. |
[31] | 江洪, 张兆明, 汪小钦, 等. 基于TAVI的山区毛竹林LAI反演分析[J]. 地球信息科学学报, 2015,17(4):500-504. |
[ Jiang H, Zhang Z M, Wang X Q, et al. Bamboo forest LAI retrieval and analysis in mountainous area based on TAVI[J]. Journal of Geo-information Science, 2015,17(4):500-504. ] | |
[32] | 张兆明, 何国金, 刘定生, 等. 一种改进的遥感影像地形校正物理模型[J]. 光谱学与光谱分析, 2010,30(7):1839-1842. |
[ Zhang Z M, He G J, Liu D S, et al. An improved physical model to correct topographic effects in remotely sensed imagery[J]. Spectroscopy and Spectral Analysis, 2010,30(7):1839-1842. ] | |
[33] | 徐希孺, 范闻捷, 李举材, 等. 植被二向性反射统一模型[J]. 中国科学(地球科学), 2017,47(2):217-232. |
[ Xu X R, Fun W J, Li J C, et al. A unified model of bidirectional reflectance distribution function for the vegetation canopy[J]. Science China Earth Sciences, 2017,47(2):217-232. ] | |
[34] | 于颖, 范文义, 杨曦光. 三种植被冠层二向反射分布函数模型的比较[J]. 植物生态学报, 2012,36(1):55-62. |
[ Yu Y, Fun W Y, Yang Y G. Comparisons of three models for vegetation canopy bi-directional reflectance distribution function[J]. Chinese Journal of Plant Ecology, 2012,36(1):55-62. ] |
[1] | 王艳杰, 王卷乐, 魏海硕, Altansukh Ochir, Davaadorj Davaasuren, Sonomdagva Chonokhuu. 基于稀疏样点的蒙古国产草量估算方法研究[J]. 地球信息科学学报, 2020, 22(9): 1814-1822. |
[2] | 陈如如, 胡中民, 李胜功, 郭群. 不同数据源归一化植被指数在中国北方草原区的应用比较[J]. 地球信息科学学报, 2020, 22(9): 1910-1919. |
[3] | 王学文, 赵庆展, 韩峰, 马永建, 龙翔, 江萍. 机载多光谱影像语义分割模型在农田防护林提取中的应用[J]. 地球信息科学学报, 2020, 22(8): 1702-1713. |
[4] | 许佳峰, 李云梅, 徐杰, 雷少华, 毕顺, 周玲. 黑臭水体水面阴影提取的自适应阈值算法研究[J]. 地球信息科学学报, 2020, 22(10): 1959-1970. |
[5] | 江洪, 袁亚伟, 王森. 阴影消除植被指数(SEVI)去除地形本影和落影干扰的性能评估与应用[J]. 地球信息科学学报, 2019, 21(12): 1977-1986. |
[6] | 边增淦,王文,江渊. 黑河流域中游地区作物种植结构的遥感提取[J]. 地球信息科学学报, 2019, 21(10): 1629-1641. |
[7] | 帅晨, 沙晋明, 林金煌, 季建万, 周正龙, 高尚. 不同下垫面遥感指数与地温关系的空间差异性研究[J]. 地球信息科学学报, 2018, 20(11): 1657-1666. |
[8] | 姚武韬, 关燕宁, 郭杉, 蔡丹路, 肖寒, 张春燕. 三亚热带雨林环境植被和地表能量空间分布特征[J]. 地球信息科学学报, 2017, 19(7): 950-961. |
[9] | 陈星任, 韩阳, 王家琪, 卢珍. 基于偏振植被指数的植被-土壤混合像元室内实验研究[J]. 地球信息科学学报, 2017, 19(3): 374-381. |
[10] | 穆悦, 曹晓阳, 冯益明, 曹晓明, 高翔. 地形复杂山区常用植被指数的地形校正对比[J]. 地球信息科学学报, 2016, 18(7): 951-961. |
[11] | 胡秀娟, 徐涵秋, 黄绍霖, 张灿, 唐菲. WorldView-2近红外光谱波段反演马尾松植被信息的比较研究[J]. 地球信息科学学报, 2016, 18(4): 537-543. |
[12] | 江洪, 张兆明, 汪小钦, 何国金. 基于TAVI的山区毛竹林LAI反演分析[J]. 地球信息科学学报, 2015, 17(4): 500-504. |
[13] | 乔海浪, 李旺, 牛铮. 玉米叶面积指数的CHRIS/PROBA数据反演分析[J]. 地球信息科学学报, 2015, 17(10): 1243-1248. |
[14] | 马明亮, 王超, 施润和, 高炜. 嫦娥一号IIM高光谱数据和月球轨道器LOLA DEM数据的配准与月表地形校正及评价[J]. 地球信息科学学报, 2015, 17(1): 118-125. |
[15] | 李翠翠, 樊基仓, 付潇华, 樊辉. 复杂地形山区Landsat TM影像C校正策略与实验[J]. 地球信息科学学报, 2014, 16(1): 134-141. |
|