地球信息科学学报 ›› 2020, Vol. 22 ›› Issue (3): 338-350.doi: 10.12082/dqxxkx.2020.190352
李思进1,2,3, 代文1,2,3, 熊礼阳1,2,3,*(), 汤国安1,2,3
收稿日期:
2019-07-03
修回日期:
2019-12-05
出版日期:
2020-03-25
发布日期:
2020-05-18
作者简介:
李思进(1996— ),男,山东济宁人,博士生,主要从事研究DEM数字地形分析研究。E-mail:lisijin1411@163.com
基金资助:
LI Sijin1,2,3, DAI Wen1,2,3, XIONG Liyang1,2,3,*(), TANG Guoan1,2,3
Received:
2019-07-03
Revised:
2019-12-05
Online:
2020-03-25
Published:
2020-05-18
Contact:
XIONG Liyang
Supported by:
摘要:
黄土侵蚀沟的地形表达是开展黄土沟谷侵蚀研究的基础工作,利用数字高程模型(DEM)定量描述侵蚀沟特征有助于研究侵蚀沟的形态变化和发育过程。基于DEM数据计算多种指标对黄土侵蚀沟特征进行描述是目前侵蚀沟研究中最为常用的方法。但是,受到格网DEM数据结构的限制,其计算结果会存在一定的不确定性。在侵蚀沟地形表达时,对形态特征的表达会受到DEM数据分辨率的影响,进而造成表达结果的不确定性。尤其在黄土高原地区,地形特征更为破碎,地形要素更为复杂,其表达结果受DEM分辨率的影响更为明显。本文以黄土高原典型样区为例,基于点云数据建立不同分辨率的DEM数据集,通过不同地形因子对侵蚀沟特征进行表达,分析DEM分辨率在黄土侵蚀沟形态特征表达时的不确定性。结果显示,分辨率的降低对主沟支沟比和纵比降等侵蚀沟形态特征因子产生了较大影响,且指标与分辨率多呈现线性变化关系。但是,随着侵蚀沟的横向扩张,DEM分辨率对其特征表达的影响逐渐被削弱。此外,在使用固定分析窗口进行侵蚀沟特征计算时,由于分辨率的降低,格网尺寸增大,其实际分析半径随之增大,使得计算范围内地表形态变化增加,导致沟谷切割深度随着分辨率的降低反而增加。同时,侵蚀沟主沟道区域受分辨率影响较小,沟头区域指标与分辨率的关系较弱。
李思进, 代文, 熊礼阳, 汤国安. DEM分辨率对黄土侵蚀沟形态特征表达的不确定性分析[J]. 地球信息科学学报, 2020, 22(3): 338-350.DOI:10.12082/dqxxkx.2020.190352
LI Sijin, DAI Wen, XIONG Liyang, TANG Guoan. Uncertainty of the Morphological Feature Expression of Loess Erosional Gully Affected by DEM Resolution[J]. Journal of Geo-information Science, 2020, 22(3): 338-350.DOI:10.12082/dqxxkx.2020.190352
表2
样区基本信息及特征概述
样区 | 位置 | 面积/km2 | 海拔/m | 侵蚀沟特点 |
---|---|---|---|---|
安塞 | 37°14'24"N—37°14'27"N,109°14'41"E—109°14'53"E | 0.50 | 1163.7~1416.5 | 主沟道呈东西走向,南面浅沟和切沟发育多,北面下切侵蚀强烈,发育3条较大的切沟,较少发育浅沟 |
麻地沟 | 37°28'59"N—37°28'49"N,108°48'2"E—108°48'35"E | 0.23 | 1396.8~1556.8 | 主沟道呈南北走向,浅沟和切沟发育较多 |
桥沟 | 37°34'10"N—37°34'16"N,104°16'49"E—104°16'57"E | 0.13 | 900.9~1017.1 | 主沟道呈西南—东北走向,两侧发育有较多浅沟和切沟 |
[1] | 景可 . 黄土高原沟谷侵蚀研究[J]. 地理科学, 1986,6(4):340-347. |
[ Jing K . A study on gully erosion on the Loess Plateau[J]. Scientia Geographica Sinica, 1986,6(4):340-347. ] | |
[2] | 陈永宗 . 黄土高原土壤侵蚀规律研究工作回顾[J]. 地理研究, 1987,6(1):76-85. |
[ Chen Y Z . A review:the study of soil erosion on Loess Plateau[J]. Geographical Research, 1987,6(1):76-85. ] | |
[3] | 刘秉正, 吴发启 . 黄土塬区沟谷侵蚀与发展[J]. 西北林学院学报, 1993(2):7-15. |
[ Liu B Z, Wu F Q . Gully erosion and its development on Loess Plateau[J]. Journal of Northwest Forestry University, 1993(2):7-15. ] | |
[4] | 罗来兴 . 划分晋西、陕北、陇东黄土区域沟间地与沟谷的地貌类型[J]. 地理学报, 1956,23(3):201-222. |
[ Lo L H . A tentative classification of landforms in the Loess Plateau[J]. Acta Geographica Sinica, 1956,23(3):201-222. ] | |
[5] | 陈浩, 方海燕, 蔡强国 , 等. 黄土丘陵沟壑区沟谷侵蚀演化的坡向差异——以晋西王家沟小流域为例[J]. 资源科学, 2006,28(5):176-184. |
[ Cai Q G, Chen H, Fang H Y , et al. Comparison of different aspect of erosion evolvement in the loess hilly area: a case study of Wangjiagou catchment of western Shanxi province[J]. Resources Science, 2006,28(5):176-184. ] | |
[6] | 刘秉正, 翟明柱, 吴法啟 . 渭北高原沟谷侵蚀初探[J]. 水土保持研究, 1990(2):25-33. |
[ Liu B Z, Zhai M Z, Wu F Q . A preliminary study on gully erosion in Weibei Loess Plateau[J]. Research of Soil and Water Conservation, 1990(2):25-33. ] | |
[7] | 谢振乾 . 陕西渭南黄土台塬区沟谷侵蚀作用的初步研究[J]. 陕西地质, 1994(2):56-63. |
[ Xie Z Q . On the erosion process of stream valley in Loess Plateau, Weinan, Shanxi[J]. Geology of Shaanxi, 1994(2):56-63. ] | |
[8] | Strahler A N . Hypsometric (area-altitude) analysis of erosional topography[J]. Geological Society of America Bulletin, 1952,63(11):1117-1142. |
[9] | 何雨, 贾铁飞, 李容全 . 黄土丘陵区沟谷发育及其稳定性评价[J]. 干旱区地理, 1999,22(2):64-70. |
[ He Y, Jia T F . Development of gullies and evaluation on their stability in the loess hill region[J]. Arid Land Geography, 1999,22(2):64-70. ] | |
[10] | 严宝文, 李靖, 包忠谟 . 黄土沟谷下蚀趋势评价的指标体系研究[J]. 水土保持学报, 2001,15(1):122-125. |
[ Yan B W, Li J, Bao Z M . Index system for evaluating gulley's down-erosion tendency in loess area[J]. Journal of Soil and Water Conservation, 2001,15(1):122-125.] | |
[11] | 段家朕 . 基于DEM的晋西北地区黄土沟谷不对称特征研究[D]. 南京:南京师范大学, 2017. |
[ Duan J Z . DEM based research on the asymmetrical characteristic of loess gully morphology in the northwest Shanxi province[D]. Nanjing Normal University, 2017. ] | |
[12] | 汤国安, 那嘉明, 程维明 . 我国区域地貌数字地形分析研究进展[J]. 测绘学报, 2017,46(10):1570-1591. |
[ Tang G A, Na J M, Cheng W M . Progress of digital terrain analysis on regional geomorphology in China[J]. Acta Geodaetica et Cartographica Sinica 2017,46(10):1570-1591. ] | |
[13] | 晏实江, 汤国安, 李发源 , 等. 利用DEM边缘检测进行黄土地貌沟沿线自动提取[J]. 武汉大学学报·信息科学版, 2011,36(3):363-367. |
[ Yan S J, Tang G A, Li F Y . An edge detection based method for extraction of loess shoulder-line from grid DEM[J]. Geomatics and Information Science of Wuhan University, 2011,36(3):363-367. ] | |
[14] | 宋效东, 汤国安, 周毅 , 等. 基于并行GVF Snake模型的黄土地貌沟沿线提取[J]. 中国矿业大学学报, 2013,42(1):134-140. |
[ Song X D, Tang G A, Zhou Y , et al. Extraction of loess landform shoulder line based on parallel GVF Snake model[J], Journal of China University of Mining & Technology, 2013,42(1):134-140. ] | |
[15] | 李俊, 汤国安, 张婷, 等. 利用DEM提取陕北黄土高原沟谷网络的汇流阈值研究[J]. 水土保持通报, 2007(2):75-78. |
[ Li J, Tang G A, Zhang T , et al. Conflux threshold of extracting stream networks from DEMs in north Shaanxi province of Loess Plateau[J]. Bulletin of Soil and Water Conservation, 2007(2):75-78. ] | |
[16] | Karkee M, Steward B L, Aziz S A . Improving quality of public domain digital elevation models through data fusion[J]. Biosystems Engineering, 2008,101(3):293-305. |
[17] | Tang G A, Song X D, Li F Y , et al. Slope spectrum critical area and its spatial variation in the Loess Plateau of China[J]. Journal of Geographical Sciences, 2015,25(12):1452-1466. |
[18] | Zhou Y, Tang G A, Yang X , et al. Positive and negative terrains on northern Shaanxi Loess Plateau[J]. Journal of Geographical Sciences, 2010,20(1):64-76. |
[19] | 张维 . 基于DEM的陕北黄土高原流域剖面谱研究[D]. 南京:南京师范大学, 2011. |
[ Zhang W . Research of catchment profile spectrum on northern Shanxi Loess Plateau, China[D]. Nanjing: Nanjing Normal University, 2011. ] | |
[20] | 张肃 . 无人机航摄生成DEM的高程点快速提取算法[J]. 西部资源, 2019(2):146-148,150. |
[ Zhang S . A fast extraction algorithm for surface peaks of DEM derived from UAV aerial photography[J]. Western Resources, 2019(2):146-148,150. ] | |
[21] | 李永树 . 基于无人机技术的地形图测绘研究[J]. 测绘, 2011,34(4):147-151. |
[ Li Y S . Research of drawing the topographic map based on UAV images[J]. Surveying and Mapping, 2011,34(4):147-151. ] | |
[22] | 谢轶群, 朱红春, 汤国安 , 等. 基于DEM的沟谷特征点提取与分析[J]. 地球信息科学学报, 2013,15(1):61-67. |
[ Xie Y Q, Zhu H C, Tang G A , et al. Extraction and analysis of gully feature points based on DEMs[J]. Journal of Geo-information Science, 2013,15(1):61-67. ] | |
[23] | 江岭, 凌德泉, 赵明伟 , 等. 顾及多分析尺度的地形部位面向对象分类方法[J]. 地球信息科学学报, 2018,20(3):281-290. |
[ Jiang L, Ling D Q, Zhao M W , et al. Object-oriented terrain position classification based on multi-scale geomorphons[J]. Journal of Geo-information Science, 2018,20(3):281-290. ] | |
[24] | Zhao S M, Cheng W M, Zhou C H , et al. Accuracy assessment of the ASTER GDEM and SRTM3 DEM: An example in the Loess Plateau and North China Plain of China[J]. International Journal of Remote Sensing, 2011,32(23):8081-8093. |
[25] | 陈楠, 王钦敏, 汤国安 . 黄土高原坡向信息量变化与DEM分辨率的关系[J]. 高技术通讯, 2008,18(5):525-530. |
[ Chen N, Wang Q M, Tang G A . The relationship between the resolution of DEM and the accuracy of aspects and the amount of information losses in Loess Plateau[J]. Chinese High Technology Letters, 2008,18(5):525-530. ] | |
[26] | Zhou Q M, Liu X J . Analysis of errors of derived slope and aspect related to DEM data properties[J]. Computers and Geosciences, 2004,30(4):369-378. |
[27] | López-Vicente M, Álvarez S . Influence of DEM resolution on modelling hydrological connectivity in a complex agricultural catchment with woody crops[J]. Earth Surface Processes and Landforms, 2018,43:1403-1415. |
[28] | Saksena S, Merwade V . Incorporating the effect of DEM resolution and accuracy for improved flood inundation mapping[J]. Journal of Hydrology, 2015,530:180-194. |
[29] | 汤国安, 赵牡丹, 李天文 , 等. DEM提取黄土高原地面坡度的不确定性[J]. 地理学报, 2003,58(6):824-830. |
[ Tang G A, Zhao M D, Li T W , et al. Modeling slope uncertainty derived from DEMs in Loess Plateau[J]. Acta Geographica Sinica, 2003,58(6):824-830. ] | |
[30] | Chaplot V, Walter C, Curmi P . Improving soil hydromorphy prediction according to DEM resolution and available pedological data[J]. Geoderma, 2000,97:405-422. |
[31] | Dai W, Yang X, Na J M , et al. Effects of DEM resolution on the accuracy of gully maps in loess hilly areas[J]. Catena, 2019,177:114-125. |
[32] | 王轲 . 基于古城遗址信息的黄土沟壑演化模拟研究[D]. 南京:南京师范大学, 2017. |
[ Wang K . Simulation of geomorphic evolution of loess watershed based on archaeological remains information[D]. Nanjing: Nanjing Normal University, 2017. ] | |
[33] | Liu K, Ding H, Tang G , et al. Detection of catchment-scale gully-affected areas using unmanned aerial vehicle (UAV) on the Chinese Loess Plateau[J]. ISPRS International Journal of Geo-Information, 2016,5(12):238. |
[34] | Hu S, Qiu H, Wang X , et al. Acquiring high-resolution topography and performing spatial analysis of loess landslides by using low-cost UAVs[J]. Landslides, 2018,15(3):593-612. |
[35] | Liu X, Zhang Z, Peterson J. Evaluation of the performance of DEM interpolation algorithms for LiDAR data[C]. Proceedings of the 2009 Surveying and Spatial Sciences Institute Biennial International Conference (SSC 2009). Surveying and Spatial Sciences Institute, 2009: 771-779. |
[36] | 周毅, 汤国安, 习羽 , 等. 引入改进Snake模型的黄土地形沟沿线连接算法[J]. 武汉大学学报·信息科学版, 2013,38(1):82-85. |
[ Zhou Y, Tang G A, Xi Y , et al. A shoulder-lines connection algorithm using improved snake model[J]. Geomatics and Information Science of Wuhan University, 2013,38(1):82-85. ] | |
[37] |
Yan S J, Tang G A, Li F Y , et al. Snake model for the extraction of loess shoulder-line from DEMs[J]. Journal of Mountain Science, 2014,11(6):1552-1559.
doi: 10.1371/journal.pone.0123804 pmid: 25910079 |
[38] | 刘玮, 李发源, 熊礼阳 , 等. 基于区域生长的黄土地貌沟沿线提取方法与实验[J]. 地球信息科学学报, 2016,18(2):220-226. |
[ Liu W, Li F Y, Xiong L Y , et al. Shoulder line extraction in the Loess Plateau based on region growing algorithm[J]. Journal of Geo-information Science, 2016,18(2):220-226. ] | |
[39] | 王轲, 王琤, 张青峰 , 等. 地形开度和差值图像阈值分割原理相结合的黄土高原沟沿线提取法[J]. 测绘学报, 2015,44(1):67-75. |
[ Wang K, Wang Z, Zhang Q F , et al. Loess shoulder line extraction based on openness and threshold segmentation[J]. Acta Geodaetica et Cartographica Sinica, 2015,44(1):67-75. ] | |
[40] | Yang X, Li M, Na J M , et al. Gully boundary extraction based on multidirectional hill‐shading from high‐resolution DEMs[J]. Transactions in GIS, 2017,21(6):1204-1216. |
[41] | Horton R E, Horton R, Horton H . Erosional development of streams and their drainage basins: Hidrophysical approach to quantitative morfology[J]. Journal of the Japanese Forestry Society, 1945,56(3):275-370. |
[42] | 李精忠, 艾廷华, 柯舒 . DEM提取谷地线的有效汇水量阈值范围[J]. 武汉大学学报·信息科学版, 2012,37(10):1244-1247. |
[ Li J Z, Ai T H, Ke S . Effective flow accumulation threshold of extracting valley-line from grid-based digital elevation model[J]. Geomatics and Information Science of Wuhan University, 2012,37(10):1244-1247. ] | |
[43] |
O'callaghan J F, Mark D M . The extraction of drainage networks from digital elevation data[J]. Computer Vision Graphics & Image Processing, 1984,28(3):323-344.
doi: 10.1186/s40064-016-3207-0 pmid: 27652117 |
[44] | 常瑞雪 . 基于沟沿线的黄土高原沟蚀程度评价及分区研究[D]. 南京:南京师范大学, 2015. |
[ Chang R X . Studies on gully erosion assessment and partition in Loess Plateau based on shoulder lines[D]. Nanjing: Nanjing Normal University, 2015. ] | |
[45] | 李晨瑞 . 基于地形特征要素的黄土沟谷发育及区域差异性研究[D]. 南京:南京师范大学, 2018. |
[ Li C R . Studies on gully development and regional difference in Loess Plateau based on topographic feature elements[D]. Nanjing: Nanjing Normal University, 2018. ] | |
[46] | Ahmadzadeh M R, Petrou M . Error statistics for slope and aspect when derived from interpolated data[J]. IEEE Transactions on Geoscience & Remote Sensing, 2001,39(9):1823-1833. |
[47] | 刘增文, 李雅素 . 黄土残塬区侵蚀沟道分类研究[J]. 中国水土保持, 2003,9:32-34,50. |
[ Liu Z W, Li S Y . Study on classification of gully erosion in the remained loess area[J]. Soil and water conservation in China, 2003,9:32-34,50. ] | |
[48] | 江岭, 汤国安, 赵明伟 , 等. 顾及地貌结构特征的黄土沟头提取及分析[J]. 地理研究, 2013,32(11):2153-2162. |
[ Jiang L, Tang G A, Zhao M W , et al. Extraction and analysis of loess gully heads considering geomorphological structures[J]. Geographical Research, 2013,32(11):2153-2162. ] | |
[49] | 朱显谟 . 黄土区土壤侵蚀的分类[J]. 土壤学报, 1956(2):99-115. |
[ Zhu X M . Classification on the soil erosion in the loess region[J]. Acta Pedologica Sinica, 1956(2):99-115. ] | |
[50] | Jian X, Xiao X, He C F , et al. A hadoop-based algorithm of generating DEM grid from point cloud data[J]. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, 2015, XL-7/W3:1209-1214. |
[51] | Lu G Y, Wong D W . An adaptive inverse-distance weighting spatial interpolation technique[J]. Computers & geosciences, 2008,34(9):1044-1055. |
[1] | 李琳叶, 李艳艳, 陈传法, 刘妍, 刘雅婷, 刘盼盼. 林区数字高程模型修正方法:顾及高程自相关的后向传播神经网络模型[J]. 地球信息科学学报, 2023, 25(5): 935-952. |
[2] | 段艳慧, 赵学胜, 彭舒. 基于信息熵的GlobeLand 30和WorldCover耕地破碎区一致性分析[J]. 地球信息科学学报, 2023, 25(5): 1027-1036. |
[3] | 衡雪彪, 许捍卫, 唐璐, 汤恒, 许怡蕾. 基于改进全卷积神经网络模型的土地覆盖分类方法研究[J]. 地球信息科学学报, 2023, 25(3): 495-509. |
[4] | 黄帅元, 董有福, 李海鹏. 黄土高原区SRTM1 DEM高程误差校正模型构建及对比分析[J]. 地球信息科学学报, 2023, 25(3): 669-681. |
[5] | 陈凯, 雷少华, 代文, 王春, 刘爱利, 李敏. 基于开源数据和条件生成对抗网络的地形重建方法[J]. 地球信息科学学报, 2023, 25(2): 252-264. |
[6] | 贝祎轩, 陈传法, 王鑫, 孙延宁, 何青鑫, 李坤禹. 机载LiDAR点云密度和插值方法对DEM及地表粗糙度精度影响分析[J]. 地球信息科学学报, 2023, 25(2): 265-276. |
[7] | 刘洋, 康健, 管海燕, 汪汉云. 基于双注意力残差网络的高分遥感影像道路提取模型[J]. 地球信息科学学报, 2023, 25(2): 396-408. |
[8] | 于明洋, 陈肖娴, 张文焯, 刘耀辉. 融合网格注意力阀门和特征金字塔结构的高分辨率遥感影像建筑物提取[J]. 地球信息科学学报, 2022, 24(9): 1785-1802. |
[9] | 吴亚楠, 郭长恩, 于东平, 段爱民, 刘玉, 董士伟, 单东方, 吴耐明, 李西灿. 基于不确定性分析的遥感分类空间分层及评估方法[J]. 地球信息科学学报, 2022, 24(9): 1803-1816. |
[10] | 闵杰, 张永生, 于英, 吕可枫, 王自全, 张磊. 增强型遥感影像SRGAN算法及其在三维重建精度提升中的应用[J]. 地球信息科学学报, 2022, 24(8): 1631-1644. |
[11] | 刘业森, 刘媛媛, 李敏, 李匡. 降雨数据空间分辨率在城市流域洪峰变化分析中的影响[J]. 地球信息科学学报, 2022, 24(7): 1326-1336. |
[12] | 郭逸飞, 吴田军, 骆剑承, 石含宁, 郜丽静. 基于不确定性迭代优化的山地植被遥感制图[J]. 地球信息科学学报, 2022, 24(7): 1406-1419. |
[13] | 张华, 郑祥成, 郑南山, 史文中. 基于MAEU-CNN的高分辨率遥感影像建筑物提取[J]. 地球信息科学学报, 2022, 24(6): 1189-1203. |
[14] | 岳振宇, 范大昭, 董杨, 纪松, 李东子. 一种星载平台轻量化快速影像匹配方法[J]. 地球信息科学学报, 2022, 24(5): 925-939. |
[15] | 陈振, 陈芸芝, 吴婷, 李佳优. 面向高分遥感影像道路提取的轻量级双注意力和特征补偿残差网络模型[J]. 地球信息科学学报, 2022, 24(5): 949-961. |
|