地球信息科学学报 ›› 2020, Vol. 22 ›› Issue (7): 1567-1577.doi: 10.12082/dqxxkx.2020.190387
张源榆1,2,3(), 黄荣永1,2,3,*(
), 余克服1,2,3, 樊明顺1,2,3, 周国清4
收稿日期:
2019-07-20
修回日期:
2019-11-27
出版日期:
2020-07-25
发布日期:
2020-09-25
通讯作者:
黄荣永
E-mail:zhangyuanyu2009@163.com;rongyonghuang@gxu.edu.cn
作者简介:
张源榆(1998— ),男,广西北海人,主要从事珊瑚礁遥感研究。E-mail:基金资助:
ZHANG Yuanyu1,2,3(), HUANG Rongyong1,2,3,*(
), YU Kefu1,2,3, FAN Mingshun1,2,3, ZHOU Guoqing4
Received:
2019-07-20
Revised:
2019-11-27
Online:
2020-07-25
Published:
2020-09-25
Contact:
HUANG Rongyong
E-mail:zhangyuanyu2009@163.com;rongyonghuang@gxu.edu.cn
Supported by:
摘要:
遥感水深反演具有非接触测量和省时省力等优点,能够为航海、岛礁工程与珊瑚礁生态调查等活动提供重要参考。随着高光谱遥感卫星数量的增长,基于高光谱遥感影像的水深反演具有良好的发展与应用潜力。HOPE(Hyperspectral Optimization Process Exemplar)算法是比较常用的高光谱水深反演算法。鉴于HOPE算法在低遥感反射率海域会出现水深被高估的问题,本文基于Hyperion高光谱遥感影像提出一种改进的水深反演算法。该算法针对危险或难以到达海域往往具有水体光学性质较为均一的特点,利用深水区遥感反射率的观测值来估计整个研究区域内的水体光学性质参数并将其固定,以便减少未知参数数量,解决水深被高估的问题,最终达到提高水深反演整体精度的目的。塞班岛和中业岛的实验结果表明,改进算法能够有效克服常规HOPE算法在低遥感反射率水域高估水深的问题。改进算法能够将平均遥感反射率小于0.0075sr-1(塞班岛)和0.001 sr-1(中业岛)范围内的水域的水深反演平均绝对误差从常规HOPE算法的2.94 m和6.44 m分别降低至2.56 m和4.99 m,从而能够相应地将整体的均方根误差从3.18 m和5.39 m分别降低至2.30 m和3.32 m,而将整体的平均相对误差从32.4%和27.1%分别降低至30.6%和23.9%。因此,改进算法在提高卫星高光谱遥感影像水深反演效果方面具有可行性和有效性。
张源榆, 黄荣永, 余克服, 樊明顺, 周国清. 基于卫星高光谱遥感影像的浅海水深反演方法[J]. 地球信息科学学报, 2020, 22(7): 1567-1577.DOI:10.12082/dqxxkx.2020.190387
ZHANG Yuanyu, HUANG Rongyong, YU Kefu, FAN Mingshun, ZHOU Guoqing. Estimation of Shallow Water Depth based on Satellite Hyperspectral Images[J]. Journal of Geo-information Science, 2020, 22(7): 1567-1577.DOI:10.12082/dqxxkx.2020.190387
[1] | 苏奋振, 杜云艳, 裴相斌, 等. 中国数字海洋构建基准与关键技术[J]. 地球信息科学学报, 2006,8(1):12-20. |
[ Su F Z, Du Y Y, Pei X B, et al. Constructing digital sea of China with the datum of coastal line[J]. Journal of Geo-Information Science, 2006,8(1):12-20. ] | |
[2] | Eren F, Pe'eri S, Rzhanov Y, et al. Bottom characterization by using Airborne Lidar Bathymetry (ALB) waveform features obtained from bottom return residual analysis[J]. Remote Sensing of Environment, 2018,206:260-274. |
[3] | Polcyn F C, Sattinger I J. Water depth determinations using remote sensing techniques[C]. Remote Sensing of Environment, 1969: 1017. |
[4] | Lyzenga D R. Passive remote sensing techniques for mapping water depth and bottom features[J]. Applied Optics, 1978,17(13):379-383. |
[5] | Ma S, Tao Z, Yang X F, et al. Bathymetry retrieval from hyperspectral remote sensing data in optical-shallow water[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014,52(2):1205-1212. |
[6] | Traganos D, Poursanidis D, Aggarwal B, et al. Estimating Satellite-Derived Bathymetry (SDB) with the Google Earth Engine and Sentinel-2[J]. Remote Sensing, 2018,10(6):1-18. |
[7] | Casal G, Monteys X, Hedley J, et al. Assessment of empirical algorithms for bathymetry extraction using Sentinel-2 data[J]. International Journal of Remote Sensing, 2019,40(8):2855-2879. |
[8] | Caballero I, Stumpf R P. Retrieval of nearshore bathymetry from Sentinel-2A and 2B satellites in South Florida coastal waters[J]. Estuarine, Coastal and Shelf Science, 2019,226:1-12. |
[9] | 李丽. 基于WorldView-2数据的西沙群岛遥感水深反演——以赵述岛和南岛为例[J]. 国土资源遥感, 2016,28(4):170-175. |
[ Li L. Remote sensing bathymetric inversion for the Xisha Islands based on WorldView-2 data: A case study of Zhaoshu Island and South Island[J]. Remote Sensing for Land and Resources, 2016,28(4):170-175. ] | |
[10] |
Lee Z P, Carder K L, Mobley C D, et al. Hyperspectral remote sensing for shallow waters: 2. Deriving bottom depths and water properties by optimization[J]. Applied Optics, 1999,38(18):3831-3843.
pmid: 18319990 |
[11] | Lee Z P, Carder K L, Chen R F, et al. Properties of the water column and bottom derived from Airborne Visible Infrared Imaging Spectrometer (AVIRIS) data[J]. Journal of Geophysical Research-Oceans, 2001,106(C6):11,639-11,651. |
[12] | Lee Z P, Casey B, Arnone R, et al. Water and bottom properties of a coastal environment derived from Hyperion data measured from the EO-1 spacecraft platform[J]. Journal of Applied Remote Sensing, 2007,1:1-16. |
[13] | 刘振, 胡连波, 贺明霞. 卫星高光谱数据反演南沙岛礁区海域浅海水深和光学参数[J]. 中国海洋大学学报, 2014,44(5):101-108. |
[ Liu Z, Hu L B, He M X. Retrieval of shallow water depth and optical parameters around islands and reefs in the South China Sea by EO-1/Hyperion data[J]. Periodical of Ocean University of China, 2014,44(5):101-108. ] | |
[14] | Klonowski W M, Fearns P R C S, Lynch M J. Retrieving key benthic cover types and bathymetry from hyperspectral imagery[J]. Journal of Applied Remote Sensing, 2007,1(1):1-21. |
[15] | Brando V E, Anstee J M, Wettle M, et al. A physics based retrieval and quality assessment of bathymetry from suboptimal hyperspectral data[J]. Remote Sensing of Environment, 2009,113(4):755-770. |
[16] |
Hedley J, Russell B, Randolph K, et al. A physics-based method for the remote sensing of seagrasses[J]. Remote Sensing of Environment, 2016,174:134-147.
doi: 10.1016/j.rse.2015.12.001 |
[17] | Jay S, Guillaume M, Minghelli A, et al. Hyperspectral remote sensing of shallow waters: Considering environmental noise and bottom intra-class variability for modeling and inversion of water reflectance[J]. Remote Sensing of Environment, 2017,200:352-367. |
[18] | Petit T, Bajjouk T, Mouquet P, et al. Hyperspectral remote sensing of coral reefs by semi-analytical model inversion-Comparison of different inversion setups[J]. Remote Sensing of Environment, 2017,190:348-365. |
[19] | Mobley C D, Sundman L K, Davis C O, et al. Interpretation of hyperspectral remote-sensing imagery by spectrum matching and look-up tables[J]. Applied Optics, 2005,44(17):3576-3592. |
[20] | Kutser T, Miller I, Jupp D L B. Mapping coral reef benthic substrates using hyperspectral space-borne images and spectral libraries[J]. Estuarine, Coastal and Shelf Science, 2006,70(3):449-460. |
[21] | Hedley J, Roelfsema C, Phinn S R. Efficient radiative transfer model inversion for remote sensing applications[J]. Remote Sensing of Environment, 2009,113(11):2527-2532. |
[22] |
Garcia R A, Lee Z P, Hochberg E J. Hyperspectral shallow-water remote sensing with an enhanced benthic classifier[J]. Remote Sensing, 2018,10(1):1-25.
doi: 10.3390/rs10010001 |
[23] |
Dekker A G, Phinn S R, Anstee J, et al. Intercomparison of shallow water bathymetry, hydro-optics, and benthos mapping techniques in Australian and Caribbean coastal environments[J]. Limnology and Oceanography-Methods, 2011,9:396-425.
doi: 10.4319/lom.2011.9.396 |
[24] | NOAA Biogeography Branch. Shallow-water benthic habitats of American Samoa, Guam, and the Commonwealth of the Northern Mariana Islands: Manua[R]. Silver Spring: 2005. |
[25] | Earth explorer[EB/OL]. https://earthexplorer.usgs.gov/. |
[26] | National Centers for Coastal Ocean Science[EB/OL]. https://coastalscience.noaa.gov/. |
[27] | Tides and currents[EB/OL]. https://tidesandcurrents.noaa.gov/. |
[28] | Liu A K, Hsu M K. Satellite remote sensing of Spratly Islands[M]. Taiwan: Tingmao Publish Company, 2007. |
[29] | OSU Tidal Inversion Software[CP]. http://volkov.oce.orst.edu/tides/. |
[30] |
Reinersman P, Carder K L, Chen F R. Satellite-sensor calibration verification with the cloud-shadow method[J]. Applied Optics, 1998,37(24):5541-5549.
doi: 10.1364/ao.37.005541 pmid: 18286038 |
[31] |
Hochberg E J, Atkinson M J, Andéfouët S. Spectral reflectance of coral reef bottom-types worldwide and implications[J]. Remote Sensing of Environment, 2003,85(2):159-173.
doi: 10.1016/S0034-4257(02)00201-8 |
[32] |
Kutser T, Vahtmäe E, Praks J. A sun glint correction method for hyperspectral imagery containing areas with non-negligible water leaving NIR signa[J]. Remote Sensing of Environment, 2009,113(10):2267-2274.
doi: 10.1016/j.rse.2009.06.016 |
[33] |
Huang R Y, Yu K F, Wang Y H, et al. Bathymetry of the coral reefs of Weizhou Island based on multispectral satellite images[J]. Remote Sensing, 2017,9(7):1-25.
doi: 10.3390/rs9010001 |
[34] |
Eugenio F, Marcello J, Martin J. High-resolution maps of bathymetry and benthic habitats in shallow-water environments using multispectral remote sensing imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015,53(7):3539-3549.
doi: 10.1109/TGRS.2014.2377300 |
[35] | Moderate Resolution Imaging Spectroradiometer[EB/OL]. https://modis.gsfc.nasa.gov/. |
[36] |
Pearlman J S, Barry P S, Segal C C, et al. Hyperion, a space-based imaging spectrometer[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003,41(6):1160-1173.
doi: 10.1109/TGRS.2003.815018 |
[37] | 周雨霁, 田庆久. EO-1 Hyperion高光谱数据的质量评价[J]. 地球信息科学学报, 2008,10(5):278-283. |
[ Zhou Y J, Tian Q J. Image quality evaluation of EO-1 Hyperion sensor[J]. Journal of Geo-information Science, 2008,10(5):278-283. ] | |
[38] |
Coleman T F, Li Y Y. An interior trust region approach for nonlinear minimization subject to bounds[J]. SIAM Journal on Optimization, 1996,6(2):418-445.
doi: 10.1137/0806023 |
[1] | 李玉, 李奕燃, 王光辉, 石雪. 基于加权指数函数模型的高光谱图像分类方法[J]. 地球信息科学学报, 2020, 22(8): 1642-1653. |
[2] | 周伟, 李浩然, 石佩琪, 谢利娟, 杨晗. 三江源区毒杂草型退化草地植被光谱特征分析[J]. 地球信息科学学报, 2020, 22(8): 1735-1742. |
[3] | 许佳峰, 李云梅, 徐杰, 雷少华, 毕顺, 周玲. 黑臭水体水面阴影提取的自适应阈值算法研究[J]. 地球信息科学学报, 2020, 22(10): 1959-1970. |
[4] | 邓超, 陈志彪, 陈海滨, 陈志强. 南方红壤侵蚀区长汀县不同生态恢复年限下芒萁叶绿素含量的高光谱估算模型[J]. 地球信息科学学报, 2019, 21(6): 948-957. |
[5] | 王华斌, 陶万成, 李玉, 赵泉华. 基于先验HMRF的MAP分块超分重建方法[J]. 地球信息科学学报, 2019, 21(3): 315-326. |
[6] | 叶发旺, 孟树, 张川, 邱骏挺, 王建刚, 刘洪成, 武鼎. 甘肃龙首山芨岭铀矿床碱交代型铀矿化蚀变航空高光谱识别[J]. 地球信息科学学报, 2019, 21(2): 279-292. |
[7] | 陈星任, 韩阳, 王家琪, 卢珍. 基于偏振植被指数的植被-土壤混合像元室内实验研究[J]. 地球信息科学学报, 2017, 19(3): 374-381. |
[8] | 王杰, 黄春林, 郝晓华. 一种考虑雪粒径变化的积雪面积反演算法[J]. 地球信息科学学报, 2017, 19(1): 101-109. |
[9] | 朱勇, 吴波. 光谱与空间维双重稀疏表达的高光谱影像分类[J]. 地球信息科学学报, 2016, 18(2): 263-271. |
[10] | 杨可明, 魏华锋, 刘飞, 史钢强, 孙阳阳. 以光谱信息熵改进的N-FINDR高光谱端元提取算法[J]. 地球信息科学学报, 2015, 17(8): 979-985. |
[11] | 蔡悦, 苏红军, 李茜楠. 萤火虫算法优化的高光谱遥感影像极限学习机分类方法[J]. 地球信息科学学报, 2015, 17(8): 986-994. |
[12] | 刘德长, 叶发旺, 赵英俊, 田丰, 邱骏挺. 航空高光谱遥感金矿床定位模型及找矿应用——以甘肃北山柳园-方山口地区为例[J]. 地球信息科学学报, 2015, 17(12): 1545-1553. |
[13] | 乔海浪, 李旺, 牛铮. 玉米叶面积指数的CHRIS/PROBA数据反演分析[J]. 地球信息科学学报, 2015, 17(10): 1243-1248. |
[14] | 徐君, 徐富红, 蔡体健, 王彩玲, 黄德昌, 李伟平. 一种基于最大距离的纯像元指数端元提取算法[J]. 地球信息科学学报, 2015, 17(1): 86-90. |
[15] | 李雪轲, 王晋年, 张立福, 杨杭, 刘凯. 面向对象的航空高光谱图像混合分类方法[J]. 地球信息科学学报, 2014, 16(6): 941-948. |
|