地球信息科学学报 ›› 2020, Vol. 22 ›› Issue (1): 100-112.doi: 10.12082/dqxxkx.2020.190406
关庆锋1, 任书良1, 姚尧1,2,*(), 梁迅1, 周剑锋1, 袁泽皓1, 戴良洋1
收稿日期:
2019-07-29
修回日期:
2019-11-04
出版日期:
2020-01-25
发布日期:
2020-04-08
通讯作者:
姚尧
E-mail:yaoy@cug.edu.cn
作者简介:
关庆锋(1977— ),男,四川绵阳人,博士,教授,研究方向为高性能空间计算和时空大数据。E-mail:guanqf@cug.edu.cn
基金资助:
GUAN Qingfeng1, REN Shuliang1, YAO Yao1,2,*(), LIANG Xun1, ZHOU Jianfeng1, YUAN Zehao1, DAI Liangyang1
Received:
2019-07-29
Revised:
2019-11-04
Online:
2020-01-25
Published:
2020-04-08
Contact:
YAO Yao
E-mail:yaoy@cug.edu.cn
Supported by:
摘要:
有效分析城市不同经济水平人群的分布特征和活动模式对优化城市资源配置和揭示空间隔离现象有着极高的价值。但人群活动和社会经济等级数据较敏感,使得以往研究仅停留在宏观层面,难以合理划分人群经济等级并对其空间分布和活动模式进行定量分析。本研究以深圳为研究区,基于空间位置关联分析方法,耦合手机信令数据和细尺度房价数据实现了人群经济水平的准确划分,通过计算活动指标定量的分析了不同经济水平人群的空间分布和行为活动特征。研究表明:深圳市不同经济水平人群活动分布与各行政区经济发展相关,呈现“南高北低,西高东低”的格局;深圳市不同经济水平人群之间活动模式存在差异,活动范围、出行距离、出行速度与经济水平存在正向相关;高经济水平人群职住地点相距较远,存在跨行政区分布的现象。本研究分析了城市不同经济水平人群的空间分布特征和活动模式,对城市规划和解决社会不平等问题具有重要的参考价值。
关庆锋, 任书良, 姚尧, 梁迅, 周剑锋, 袁泽皓, 戴良洋. 耦合手机信令数据和房价数据的城市不同经济水平人群行为活动模式研究[J]. 地球信息科学学报, 2020, 22(1): 100-112.DOI:10.12082/dqxxkx.2020.190406
GUAN Qingfeng, REN Shuliang, YAO Yao, LIANG Xun, ZHOU Jianfeng, YUAN Zehao, DAI Liangyang. Revealing the Behavioral Patterns of Different Socioeconomic Groups in Cities with Mobile Phone Data and House Price Data[J]. Journal of Geo-information Science, 2020, 22(1): 100-112.DOI:10.12082/dqxxkx.2020.190406
表1
手机信令数据样例"
用户id | 记录次数 | 记录时刻 | 记录位置 | 记录时刻 | … |
---|---|---|---|---|---|
f5d4a*******0205 | 22 | 20120323 00:01:32 | 114.18** 22.64** | 20120323 01:28:39 | … |
0bdf1*******91cb | 24 | 20120322 23:30:13 | 114.21** 22.60** | 20120323 00:30:15 | … |
1db81*******adf3 | 23 | 20120322 23:25:37 | 114.21** 22.60** | 20120323 00:09:29 | … |
4cdd3*******49a3 | 9 | 20120323 12:53:30 | 114.09** 22.73** | 20120323 02:27:50 | … |
556df*******439c | 22 | 20120322 23:23:27 | 114.21** 22.60** | 20120323 00:26:04 | … |
… | … | … | … | … | … |
5790f*******c970 | 14 | 20120323 10:55:40 | 114.35** 22.70** | 20120323 11:26:35 | … |
表2
深圳市不同经济水平人群活动指标对比表"
经济水平 | 居家时间 | 工作时间 | 生活娱乐时间 | 活动点数量 | 惯性矩 | 活动熵 | 出行时间 | 出行距离 | 职住距离 | 出行速度 |
---|---|---|---|---|---|---|---|---|---|---|
低 | 1.000 | 1.000 | 0.942 | 0.987 | 0.625 | 0.982 | 0.934 | 0.831 | 0.674 | 0.581 |
中低 | 0.996 | 0.994 | 0.939 | 0.986 | 0.692 | 0.982 | 0.957 | 0.863 | 0.720 | 0.839 |
中 | 0.988 | 0.986 | 0.966 | 0.999 | 0.780 | 0.999 | 0.984 | 0.898 | 0.884 | 0.896 |
中高 | 0.965 | 0.955 | 0.989 | 1.000 | 0.778 | 1.000 | 1.000 | 0.924 | 0.943 | 0.934 |
高 | 0.943 | 0.945 | 1.000 | 0.999 | 1.000 | 0.998 | 0.997 | 1.000 | 1.000 | 1.000 |
[1] | 中华人民共和国国家统计局. 2010年第六次全国人口普查主要数据公报(第1号)[R]. 2011. |
[ National Bureau of statistics of the People's Republic of China. Bulletin of main data of the sixth national population census in 2010 (no. 1)[R]. 2011. ] | |
[2] | 段成荣, 吕利丹, 邹湘江 . 当前我国流动人口面临的主要问题和对策——基于2010年第六次全国人口普查数据的分析[J]. 人口研究, 2013,37(2):17-24. |
[ Duan C R, Lv L D, Zou X J . Major Challenges for China's Floating Population and Policy Suggestions:An Analysis of the 2010 Population Census Data.[J]. Population Research, 2013,37(2):17-24. ] | |
[3] | Martens P, Hall L . Malaria on the move: Human population movement and malaria transmission[J]. Emerging Infectious Diseases, 2000,6(2):103-109. |
[4] | 牛方曲, 王芳 . 城市土地利用——交通集成模型的构建与应用[J]. 地理学报, 2018,73(2):380-392. |
[ Niu F Q, Wang F . Modelling urban spatial impacts of land-use/transport policies[J]. Acta Geographica Sinica, 2018,73(2):380-392. ] | |
[5] | Black R, Bennett S R G, Thomas S M , et al. Climate change: Migration as adaptation[J]. Nature, 2011,478(7370):447-449. |
[6] | Batty M . The size, scale, and shape of cities[J]. Science, 2008,319(5864):769-771. |
[7] | Kitchin R . The real-time city? Big data and smart urbanism[J]. GeoJournal, 2014,79(1):1-14. |
[8] | Wakamiya S, Lee R, Sumiya K . Crowd-based urban characterization: Extracting crowd behavioral patterns in urban areas from twitter[J]. Pers Ubiquit Comput, 2013,17:605-620. |
[9] | Hanson S, Hanson P . The travel-activity patterns of urban residents: Dimensions and relationships to sociodemographic characteristics[J]. Economic Geography, 1981,57(4):332-347. |
[10] | Hanson S, Hanson P . Gender and urban activity patterns in uppsala, sweden[J]. Geographical Review, 1980,70(3):291. |
[11] | Limtanakool N, Dijst M, Schwanen T . The influence of socioeconomic characteristics, land use and travel time considerations on mode choice for medium and longer distance trips[J]. Journal of Transport Geography, 2006,14(5):327-341. |
[12] | Carlssonkanyama A, Linden A . Travel patterns and environmental effects now and in the future: Implications of differences in energy consumption among socio-economic groups[J]. Ecological Economics, 1999,30(3):405-417. |
[13] | Silm S, Ahas R . Ethnic differences in activity spaces: A study of out-of-home nonemployment activities with mobile phone data[J]. Annals of The Association of American Geographers, 2014,104(3):542-559. |
[14] | Xu Y, Shaw S, Zhao Z , et al. Understanding aggregate human mobility patterns using passive mobile phone location data: A home-based approach[J]. Transportation, 2015,42(4):625-646. |
[15] | Huang Q, Wong D W S . Activity patterns, socioeconomic status and urban spatial structure: what can social media data tell us?[J]. International Journal of Geographical Information Science, 2016,30(9):1873-1898. |
[16] | Xu Y, Belyi A, Bojic I , et al. Human mobility and socioeconomic status: Analysis of Singapore and Boston[J]. Computers, Environment and Urban Systems, 2018,72:51-67. |
[17] | 深圳市统计局. 深圳统计年鉴[M]. 北京: 中国统计出版社, 2018. |
[ Statistical yearbook of Shenzhen[M]. Beijing: China statistics press, 2018. ] | |
[18] | 林宇川, 冯健 . 深圳关内关外一体化过程中的边界效应及时空演变[J]. 热带地理, 2011,31(6):580-585. |
[ Lin Y C, Feng J . Border effect and its temporal-spatial evolution in the process of regional integration in Shenzhen[J]. Tropical Geography, 2011,31(6):580-585. ] | |
[19] | 深圳市统计局. 深圳市2015 年全国 1%人口抽样调查主要数据公报[R]. 2015. |
[ Shenzhen statistics bureau. Shenzhen 2015 national 1% sample survey main data bulletin[R]. 2015. ] | |
[20] | 陈刚, 李树, 陈屹立 . 人口流动对犯罪率的影响研究[J]. 中国人口科学, 2009(4):52-61. |
[ Chen G, Li S, Chen Y L . Population mobility and crime:An empirical analysis based on China's observation[J]. Chinese Journal of Population Science, 2009(4):52-61. ] | |
[21] | 邵源, 宋家骅 . 大城市交通拥堵管理策略与方法——以深圳市为例[J]. 城市交通, 2010,8(6):7-13. |
[ Shao Y, Song J H . Traffic congestion management strategies and methods in large metropolitan area: A case study in Shenzhen[J]. City Traffic, 2010,8(6):7-13. ] | |
[22] | 傅崇辉, 苏杨, 陆杰华 , 等. 深圳人口与健康发展报告(2014)[R]. 2014. |
[ Fu C H, Su Y, Lu J H, et al. Shenzhen population and health development report (2014)[R]. 2014. ] | |
[23] | 郑文娟 . 中国城市住房价格与住房租金的影响因素及相互关系研究[D]. 杭州:浙江大学, 2011. |
[ Zheng W J . Study on the determinants and relationship between China's urban housing prices and rents[D]. Hangzhou: Zhejiang University, 2011. ] | |
[24] | Cui N, Gu H, Shen T . The spatial differentiation and relationship between housing prices and rents: Evidence from Beijing in China[J]. Geographical Research, 2019, DOI: 10.11821/dlyj020180352. |
[25] | Zhai D, Shang Y, Wen H , et al. Housing price, housing rent, and rent-price ratio: Evidence from 30 cities in China[J]. Journal of Urban Planning and Development-asce, 2018,144(1):4017026. |
[26] | 方毅, 赵石磊 . 房屋销售价格和租赁价格的关系研究[J]. 数理统计与管理, 2007,26(6):951-957. |
[ Fang Y, Zhao S L . Empirical study on the relationship of sale price and rent of house in China[J]. Application of Statistics and Management, 2007,26(6):951-957. ] | |
[27] | 姚尧, 任书良, 王君毅 , 等. 卷积神经网络和随机森林的城市房价微观尺度制图方法[J]. 地球信息科学学报, 21(2):36-45. |
[ Yao Y, Ren S L, Wang J Y , et al. Mapping the fine-scale housing price distribution by integrating a convolutional neural network and random forest[J]. Journal of Geo-information Science, 2019,21(2):168-177. ] | |
[28] | Yao Y, Zhang J, Hong Y , et al. Mapping fine-scale urban housing prices by fusing remotely sensed imagery and social media data[J]. Transactions in Gis, 2018,22(2):561-581. |
[29] | Ye Y, Zheng Y, Chen Y , et al. Mining individual life pattern based on location history[C]. 2009 tenth international conference on mobile data management: Systems, services and middleware, IEEE, 2009. |
[30] | Zheng Y . Trajectory data mining: An overview[J]. ACM Transactions on intelligent systems and technology, 2015,6(3):29. |
[31] | Gonzalez M C Hidalgo A R C Barabasi A . Understanding individual human mobility patterns[J]. Nature, 2008,453(7196):779-782. |
[32] | Song C, Qu Z, Blumm N , et al. Limits of predictability in human mobility[J]. Science, 2010,327(5968):1018-1021. |
[33] | Xu Y, Shaw S, Zhao Z , et al. Another tale of two cities: Understanding Human activity space using actively tracked cellphone location data[J]. Annals of the American Association of Geographers, 2016,106(2):489-502. |
[34] | Xu Y, Shaw S, Yin L , et al. Understanding individual daily activity space based on large scale mobile phone locationdata[C]. Geo-Computation 2015 Conference, Dallas, Texas, US, 2015. |
[35] | 刘瑜, 肖昱, 高松 , 等. 基于位置感知设备的人类移动研究综述[J]. 地理与地理信息科学, 2011,27(4):8-13. |
[ Liu Y, Xiao Y, Gao S , et al. A review of human mobility research based on location aware devices[J]. Geography and Geo-Information Science, 2011,27(4):8-13. ] | |
[36] | Miller H J . What about people in geographic information science[R]. 2005 Re-Presenting Geographic Information Systems, John Wiley, 2005: 215-242. |
[37] | Yin Y, Shah R R, Zimmermann R . A general feature-based map matching framework with trajectory simplification[C]. Proceedings of the 7 th ACM SIGSPATIAL International Workshop on GeoStreaming. ACM , 2016: 7. |
[38] | Hagberg A, Swart P, Chult D . Exploring network structure, dynamics, and function using network X, 2008[R]. Los Alamos National Lab, Los Alamos, NM (United States), 2008. 01. |
[39] | Dijkstra E W . A note on two problems in connection with graphs[J]. Numerische Mathematics, 1959,1(1):269-271. |
[40] | Isaacman S, Becker R, Caceres R , et al. Identifying important places in people's lives from cellular network data[J]. 2011: 133-151. DOI: 10.1007/978-3-642-21726-5_9. |
[41] | Bojic I, Massaro E, Belyi A , et al. Choosing the right home location definition method for the given dataset[J]. arXiv: Social and Information Networks, 2015. |
[42] | Sevtsuk A, Ratti C . Does urban mobility have a daily routine? Learning from the aggregate data of mobile networks[J]. Journal of Urban Technology, 2010,17(1):41-60. |
[43] | 曹劲舟, 涂伟, 李清泉 , 等. 基于大规模手机定位数据的群体活动时空特征分析[J]. 地球信息科学学报, 2017,19(4):467-474. |
[ Cao J Z, Tu W, Li Q Q . Spatio-temporal analysis of aggregated human activities based on massive mobile phone tracking data[J]. Journal of Geo-information Science, 2017,19(4):467-474. ] | |
[44] | Jenks G F . The data model concept in statistical mapping[C]. International Yearbook of Cartography, 1967. |
[45] | Lefever D W . Measuring geographic concentration by means of the standard deviational ellipse[J]. American Journal of Sociology, 1926,32(1):88-94. |
[1] | 张亚, 刘纪平, 周亮, 王勇, 李鹏飞. 基于DBSCAN算法的北京市顺丰快递服务设施集群识别与空间特征分析[J]. 地球信息科学学报, 2020, 22(8): 1630-1641. |
[2] | 汪小英, 李小漫, 沈镭, 王宜龙. 长江经济带城乡一体化对能源效率的空间效应分析[J]. 地球信息科学学报, 2020, 22(11): 2188-2198. |
[3] | 刘玲,李钢,杨兰,薛淑艳. 深圳市快递自提点的空间分布特征与影响因素[J]. 地球信息科学学报, 2019, 21(8): 1240-1253. |
[4] | 宋小冬, 王园园, 杨钰颖, 张开翼, 钮心毅. 通勤距离对职住分离的统计验证[J]. 地球信息科学学报, 2019, 21(11): 1699-1709. |
[5] | 王楠, 杜云艳, 易嘉伟, 刘张, 王会蒙. 基于手机信令数据的北京市空间品质时空动态分析[J]. 地球信息科学学报, 2019, 21(1): 86-96. |
[6] | 尹凌, 姜仁荣, 赵志远, 宋晓晴, 李晓明. 利用手机通话位置数据估计城市24 h人口分布误差[J]. 地球信息科学学报, 2017, 19(6): 763-771. |
[7] | 牟乃夏, 张恒才, 陈洁, 张灵先, 戴洪磊. 轨迹数据挖掘城市应用研究综述[J]. 地球信息科学学报, 2015, 17(10): 1136-1142. |
|