地球信息科学学报 ›› 2020, Vol. 22 ›› Issue (12): 2410-2424.doi: 10.12082/dqxxkx.2020.190536

• 遥感科学与应用技术 • 上一篇    下一篇

光学卫星常态化相对辐射定标方法研究

师英蕊1(), 姜洋2, 李立涛3,*(), 于龙江2, 蒋永华4   

  1. 1.武汉大学测绘遥感信息工程国家重点实验室,武汉 430079
    2.遥感卫星总体部,北京 201203
    3.湖北师范大学城市与环境学院,黄石 435002
    4.武汉大学遥感信息工程学院,武汉 430079
  • 收稿日期:2019-09-24 修回日期:2020-08-03 出版日期:2020-12-25 发布日期:2021-02-25
  • 通讯作者: 李立涛 E-mail:2018206190030@whu.edu.cn;lilitao@whu.edu.cn
  • 作者简介:师英蕊(1996— ),女,陕西安康人,硕士生,研究方向为遥感影像辐射处理与应用。E-mail: 2018206190030@whu.edu.cn
  • 基金资助:
    国家自然科学基金项目(41971412);国家重点研发计划项目(2016YFB0500801)

The Research on Normalized Radiometric Calibration Method of Optical Satellite

SHI Yingrui1(), JIANG Yang2, LI Litao3,*(), YU Longjiang2, JIANG Yonghua4   

  1. 1. State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China
    2. General Remote Sensing Department, Beijing 201203, China
    3. College of Urban and Environmental Sciences, Hubei Normal University, Huangshi 435002, China
    4. School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, China
  • Received:2019-09-24 Revised:2020-08-03 Online:2020-12-25 Published:2021-02-25
  • Contact: LI Litao E-mail:2018206190030@whu.edu.cn;lilitao@whu.edu.cn
  • Supported by:
    National Natural Science Foundation of China(41971412);National Key Research and Development Program of China(2016YFB0500801)

摘要:

相对辐射定标是获得各类光学遥感卫星传感器的高精度观测产品的必备条件,由于受发射震动、在轨空间环境变化等因素以及传感器自身衰减的影响,传感器在轨响应状态会随时间发生衰减和漂移,单一相对辐射定标方法无法保障卫星传感器在特定时间的探元响应一致性。本文以光学卫星传感器全生命周期影像辐射质量保障为目标,主要研究了光学卫星传感器在轨生命周期内高频率、高定标精度的常态化相对辐射定标方法,并总结了当前常用的相对辐射定标精度评估方法,评估了各定标方法的指标以及应用场景。利用珞珈一号01星(LJ1-01)夜光传感器获取的影像进行在轨暗电流、和在轨均匀场地定标实验和验证,珠海一号02组高光谱卫星影像被用来实施和验证统计定标和偏航辐射定标方法,并耦合多种定标方法实现常态化辐射定标。实验结果表明:各种定标方法处理后影像的条纹系数小于0.25%,图像相对标准差均优于3.00%;多种定标方法相互结合的常态化辐射定标方法实现了多种定标方法的优势最大化,完成常见传感器的高精度在轨标定。

关键词: 光学卫星, 响应一致性, 相对辐射定标, 暗电流定标, 星上定标, 在轨均匀场地定标, 统计定标, 偏航辐射定标

Abstract:

The relative radiometric calibration of optical satellite sensors minimizes the inconsistency of linear or non-linear responses of the sensor detectors with different incident radiances. It is a prerequisite of various types of high-quality remote sensing products. The response of on-orbit sensor changes with time due to factors such as launch induced vibration, space environment changes, and the sensor degradation. However, both the one-time relative radiometric calibration and single relative radiometric calibration methods cannot guarantee the consistency in responses of satellite sensors at a specific time. Therefore, the normalized on-orbit radiometric calibration method with high frequency and high precision for satellite sensors is necessary for better applications of remote sensing products. In this study, we focused on the image radiometric calibration of the whole life cycle of optical satellite sensors, and the high-frequency, high-precision, wide or full dynamic range on-orbit relative radiometric calibration methods. Also, we summarized the existing accuracy evaluation methods of relative radiometric calibration methods as well as their application scenarios. In our study, the LJ1-01 nighttime satellite images were used to verify the dark current and uniform field calibration methods. The Zhuhai1 group 02 hyperspectral satellite images were used to verify the statistical calibration and yawing radiometric calibration methods as well as the normalized radiometric calibration method integrated by a variety of calibration methods. Our results show that the stripe coefficient was less than 0.25%, with a higher relative standard deviation of the images (3.00%) than images processed by each individual evaluation method. The normalized radiometric calibration method integrated by various calibration methods maximizes the advantages of individual calibration methods and is capable of high precision on-orbit calibration for common sensors, which further guarantees the quality of remote sensing products and meets the requirements of quantitative application.

Key words: optical satellites, response consistency, relative radiometric calibration, the dark current calibration, the on-board calibration, the uniform sites calibration, the statistical calibration, the yaw calibration