地球信息科学学报 ›› 2020, Vol. 22 ›› Issue (11): 2152-2165.doi: 10.12082/dqxxkx.2020.190592
丁忠昊1(), 宋立生1,*(
), 徐同仁2, 白岩2, 刘绍民2, 马明国1, 徐自为2
收稿日期:
2019-10-09
修回日期:
2020-03-16
出版日期:
2020-11-25
发布日期:
2021-01-25
作者简介:
丁忠昊(1996— ),女,重庆开州人,硕士生,主要从事地表蒸散发遥感估算研究。E-mail: 基金资助:
DING Zhonghao1(), SONG Lisheng1,*(
), XU Tongren2, BAI Yan2, LIU Shaomin2, MA Mingguo1, XU Ziwei2
Received:
2019-10-09
Revised:
2020-03-16
Online:
2020-11-25
Published:
2021-01-25
Contact:
SONG Lisheng
Supported by:
摘要:
双源能量平衡模型(Two Source Energy Balance, TSEB)和双温度差模型(Dual Temperature Difference, DTD)目前已应用于不同的下垫面类型和环境条件下地表蒸散发估算研究,但是由于模型构建理论机理的差异,模型表现会随着下垫面类型和环境条件的变化而有所不同。因此,本研究选取了黑河流域高寒草地、半干旱区灌溉农田以及干旱区河岸林3种下垫面类型地面观测数据,系统分析了DTD模型和TSEB模型的适用性以及主要误差来源。结果表明:① 在瞬时尺度上,DTD模型在高寒草地上估算潜热通量的误差较小,其RMSE为62.00 W/m2,而TSEB模型的RMSE为75.49 W/m2,2个模型的精度会随着植被覆盖度的增加而出现差异;在半干旱区灌溉农田区域,2种模型表现较为一致,但是在干旱区河岸林,2种模型都低估了潜热通量,且模型误差较大;② 在日尺度上,DTD模型和TSEB模型的表现与瞬时尺度表现较为一致,同时2种模型拆分的植被蒸腾比与基于uWUE模型(Water Use Efficiency, uWUE)拆分的结果吻合较好,但DTD模型的表现要优于TSEB模型;③ 相比较DTD模型而言,TSEB模型对地表温度输入误差更为敏感。本研究通过对比DTD模型和TSEB模型在不同下垫面和环境条件的表现,为今后模型优化提供了理论依据。
丁忠昊, 宋立生, 徐同仁, 白岩, 刘绍民, 马明国, 徐自为. 不同下垫面DTD模型与TSEB模型比较[J]. 地球信息科学学报, 2020, 22(11): 2152-2165.DOI:10.12082/dqxxkx.2020.190592
DING Zhonghao, SONG Lisheng, XU Tongren, BAI Yan, LIU Shaomin, MA Mingguo, XU Ziwei. Evaluating Two Source Energy Balance and Dual Temperature Difference Models under Various Landcovers and Environment Conditions[J]. Journal of Geo-information Science, 2020, 22(11): 2152-2165.DOI:10.12082/dqxxkx.2020.190592
表2
不同站点不同模型模拟的瞬时地表通量与实测值的比较
站点 | 通量 分量 | DTD模型 | TSEB模型 | |||||
---|---|---|---|---|---|---|---|---|
标准偏差/ (W/m2) | 平均绝对值 百分误差 | 均方根误差/ (W/m2) | 标准偏差/ (W/m2) | 平均绝对值 百分误差 | 均方根误差/ (W/m2) | |||
阿柔站 | Rn | -10.80 | 0.15 | 68.71 | 5.37 | 0.16 | 71.13 | |
G0 | 49.62 | 2.04 | 64.10 | 48.93 | 2.00 | 63.45 | ||
H | -47.15 | 0.47 | 72.89 | -44.66 | 0.52 | 79.78 | ||
LE | -13.27 | 0.30 | 62.00 | 1.10 | 0.38 | 75.49 | ||
大满站 | Rn | -23.20 | 0.12 | 53.92 | -18.18 | 0.12 | 50.86 | |
G0 | 19.18 | 0.70 | 46.97 | 18.65 | 0.70 | 46.43 | ||
H | -35.89 | 0.53 | 63.96 | -27.64 | 0.52 | 62.23 | ||
LE | -6.48 | 0.26 | 56.36 | -9.20 | 0.27 | 59.24 | ||
四道桥站 | Rn | -38.62 | 0.13 | 62.02 | -33.48 | 0.12 | 55.29 | |
G0 | 43.47 | 0.94 | 60.35 | 39.79 | 0.90 | 57.43 | ||
H | -37.23 | 0.68 | 137.70 | -70.25 | 0.54 | 112.52 | ||
LE | -44.86 | 0.79 | 136.74 | -3.03 | 0.50 | 86.40 |
[1] |
Jung M, Reichstein M, Ciais P, et al. Recent decline in the global land evapotranspiration trend due to limited moisture supply[J]. Nature, 2010,467(7318):951-954.
pmid: 20935626 |
[2] | Fensholt R, Langanke T, Rasmussen K, et al. Greenness in semi-arid areas across the globe 1981-2007 an Earth Observing Satellite based analysis of trends and drivers[J]. Remote Sensing of Environment, 2012,121:144-158. |
[3] | García M, Sandholt I, Ceccato P, et al. Actual evapotranspiration in drylands derived from in-situ and satellite data: Assessing biophysical constraints[J]. Remote Sensing of Environment, 2013,131(8):103-118. |
[4] | Dinpashoh Y. Study of reference crop evapotranspiration in I.R. of Iran[J]. Agricultural Water Management, 2006,84(1-2):123-129. |
[5] | Norman J M, Kustas W P, Humes K S. Source approach for estimating soil and vegetation energy fluxes in observations of directional radiometric surface temperature[J]. Agricultural and Forest Meteorology, 1995,77(3-4):263-293. |
[6] | Kustas W P, Norman J M. Evaluation of soil and vegetation heat flux predictions using a simple two-source model with radiometric temperatures for partial canopy cover[J]. Agricultural and Forest Meteorology, 1999,94(1):13-29. |
[7] | Long D, Singh V P. A Two-source Trapezoid Model for Evapotranspiration (TTME) from satellite imagery[J]. Remote Sensing of Environment, 2012,121:370-388. |
[8] | Song L S, Kustas W P, Liu S M, et al. Applications of a thermal-based two-source energy balance model using Priestley-Taylor approach for surface temperature partitioning under advective conditions[J]. Journal of Hydrology, 2016,540:574-587. |
[9] | Norman J M, Anderson M C, Kustas W P, et al. Remote sensing of surface energy fluxes at 101-m pixel resolutions[J]. Water Resources Research, 2003,39(8):278-294. |
[10] | Song L S, Liu S M, Kustas W P, et al. Monitoring and validating spatially and temporally continuous daily evaporation and transpiration at river basin scale[J]. Remote Sensing of Environment, 2018,219:72-88. |
[11] | Seneviratne S I, Corti T, Davin E L, et al. Investigating soil moisture-climate interactions in a changing climate: A review[J]. Earth-Science Reviews, 2010,99(3-4):125-161. |
[12] | Newman B D, Wilcox B P, Archer S R, et al. Ecohydrology of water-limited environments: A scientific vision[J]. Water Resources Research, 2006,42(6):1-15. |
[13] | 宋立生, 刘绍民, 徐同仁, 等. 土壤蒸发和植被蒸腾遥感估算与验证[J]. 遥感学报, 2017,21(6):966-981. |
[ Song L S, Liu S M, Xu T R, et al. Soil evaporation and vegetation transpiration: Remotely sensed estimation and validation[J]. Journal of Remote Sensing, 2017,21(6):966-981. ] | |
[14] | Lian X, Piao S L, Hunting ford C, et al. Partitioning global land evapotranspiration using CMIP5 models constrained by observations[J]. Nature Climate Change, 2018,8(7):640-646. |
[15] | Kool D, Agam N, Lazarovitch N, et al. A review of approaches for evapotranspiration partitioning[J]. Agricultural and Forest Meteorology, 2014,184:56-70. |
[16] | Agam N, Evett S R, Tolk J A, et al. Evaporative loss from irrigated interrows in a highly advective semi-arid agricultural area[J]. Advances in Water Resources, 2012,50:20-30. |
[17] | Zhou S, Yu B F, Huang Y F, et al. The effect of vapor pressure deficit on water use efficiency at the subdaily time scale[J]. Geophysical Research Letters, 2014,41(14):5005-5013. |
[18] | Zhou S, Yu B F, Zhang Y, et al. Partitioning evapotranspiration based on the concept of underlying water use efficiency[J]. Water Resources Research, 2016,52(2):1160-1175. |
[19] | Bai Y, Li X Y, Zhou S, et al. Quantifying plant transpiration and canopy conductance using eddy flux data: An underlying water use efficiency method[J]. Agricultural and Forest Meteorology, 2019,271:375-384. |
[20] | Colaizzi P D, Evett S R, Howell T A, et al. Radiation model for row crops: I. Geometric view factors and parameter optimization[J]. Agronomy Journal, 2012,104(2):225-240. |
[21] | Song L S, Liu S M, Kustas W P, et al. Application of remote sensing-based two-source energy balance model for mapping field surface fluxes with composite and component surface temperatures[J]. Agricultural and Forest Meteorology, 2016, 230-231:8-19. |
[22] | Kustas W P, Daughtry C S T. Estimation of the soil heat-flux net-radiation ratio from spectral data[J]. Agricultural and Forest Meteorology, 1990,49(3):205-223. |
[23] | Santanello J A, Friedl M A. Diurnal covariation in soil heat flux and net radiation[J]. Journal of Applied Meteorology, 2003,42(6):851-862. |
[24] |
Brutsaert W. Stability correction functions for the mean wind-speed and temperature in the unstable surface-layer[J]. Geophysical Research Letters, 1992,19(5):469-472.
doi: 10.1029/92GL00084 |
[25] | Kondol J, Ishida S. Sensible heat flux from the earth’s surface under natural convective conditions[J]. Journal of the Atmospheric Sciences, 1997,54(4):498-509. |
[26] | Sauer T J, Norman J M, Tanner C B. Measurement of heat and vapor transfer coefficients at the soil surface beneath a maize canopy using source plates[J]. Agricultural and Forest Meteorology, 1995,75(1-3):161-189. |
[27] | Norman J M, Kustas W P, Prueger J H, et al. Surface flux estimation using radiometric temperature: A Dual-Temperature-Difference method to minimize measurement errors[J]. Water Resources Research, 2000,36(8):2263-2274. |
[28] | Ashktorab H, Pruitt W O, Paw U K T. Partitioning of evapotranspiration using lysimeter and micro-bowen-ratio system[J]. Journal of Irrigation Drainage Engineering, 1994,120(2):450-464. |
[29] | Wang L X, Caylor K K, Villegas J C, et al. Partitioning evapotranspiration across gradients of woody plant cover: Assessment of a stable isotope technique[J]. Geophysical Research Letters, 2010,37(9):L09401. |
[30] | Williams D G, Cable W, Hultine K, et al. Evapotranspiration components determined by stable isotope, sap flow and eddy covariance techniques[J]. Agricultural and Forest Meteorology, 2004,125(3-4):241-258. |
[31] | Miralles D G, Gash J H, Holmes T R H, et al. Global canopy interception from satellite observations[J]. Journal of Geophysical Research, 2010,115:D16122. |
[32] | Liu S M, Li X, Xu Z W, et al. The Heihe integrated observatory network: A basin-scale land surface processes observatory in China[J]. Vadose Zone Journal, 2018,17(1):180072. |
[33] | Xu T R, Guo Z X, Liu S M, et al. Evaluating different machine learning methods for upscaling evapotranspiration from flux towers to the regional scale[J]. Journal of Geophysical Research: Atmospheres, 2018,123(16):8674-8690. |
[34] | Liu S M, Xu Z W, Wang W Z, et al. A comparison of eddy-covariance and large aperture scintillometer measurements with respect to the energy balance closure problem[J]. Hydrology and Earth System Sciences, 2011,15(4):1291-1306. |
[35] | Li X, Cheng G D, Liu S M, et al. Heihe Watershed Allied Telemetry Experimental Research (HiWATER): Scientific objectives and experimental design[J]. Bulletin of the American Meteorological Society, 2013,94(8):1145-1160. |
[36] | Zhou S, Yu B F, Zhang Y, et al. Water use efficiency and evapotranspiration partitioning for three typical ecosystems in the Heihe River Basin, northwestern China[J]. Agricultural and Forest Meteorology, 2018, 253-254:261-273. |
[37] | Wu B F, Xing Q, Yan N N, et al. A linear relationship between temporal multiband MODIS BRDF and aerodynamic roughness in HiWATER wind gradient data[J]. IEEE Geoscience and Remote Sensing Letters, 2015,12(3):507-511. |
[38] | Xu F N, Wang W Z, Wang J M, et al. Aggregation of area-averaged evapotranspiration over the Ejina Oasis based on a flux matrix and footprint analysis[J]. Journal of Hydrology, 2019,575:17-30. |
[39] | Wohlfahrt G, Haslwanter A, Hortnagl L, et al. On the consequences of the energy imbalance for calculating surface conductance to water vapour[J]. Agriculturaland Forest Meteorology, 2009,149(9):1556-1559. |
[40] | Timmermans W J, Kustas W P, Anderson M C, et al. An intercomparison of the Surface Energy Balance Algorithm for Land (SEBAL) and the Two-Source Energy Balance (TSEB) modeling schemes[J]. Remote Sensing of Environment, 2007,108(4):369-384. |
[41] | Kalma J D, McVicar T R, McCabe M F. Estimating land surface evaporation: A review of methods using remotely sensed surface temperature data[J]. Surveys in Geophysics, 2008,29(4):421-469. |
[42] | Cammalleri C, Anderson M C, Ciraolo G, et al. Applications of a remote sensing-based two-source energy balance algorithm for mapping surface fluxes without in situ air temperature observations[J]. Remote Sensing of Environment, 2012,124:502-515. |
[43] | Kustas W P, Anderson M C. Advances in thermal infrared remote sensing for land surface modeling[J]. Agricultural and Forest Meteorology, 2009,149(12):2071-2081. |
[44] | Xu T R, Bateni S M, Margulis S A, et al. Partitioning evapotranspiration intosoil evaporation and canopy transpiration via a two-source variational data assimilation system[J]. Journal of Hydrometeorology, 2016,17(9):2353-2370. |
[45] | French A N, Hunsaker D J, Thorp K R. Remote sensing of evapotranspiration over cotton using the TSEB and METRIC energy balance models[J]. Remote Sensing of Environment, 2015,158:281-294. |
[46] | Li M S, Zhou J, Peng Z X, et al. Component radiative temperatures over sparsely vegetated surfaces and their potential for upscaling land surface temperature[J]. Agricultural and Forest Meteorology, 2019, 276-277:107600. |
[1] | 杨泽龙, 李艳忠, 白鹏, 杜深文, 郝奕, 钱畅, 李超凡. 1980—2020年中国九大流域蒸散发及其组分时空评估[J]. 地球信息科学学报, 2022, 24(5): 889-901. |
[2] | 刘宇翔, 杨英宝, 胡佳, 孟祥金, 匡开新, 胡解君德, 鲍瑶. 基于长时序MODIS数据的中国城市昼夜热岛强度时空特征[J]. 地球信息科学学报, 2022, 24(5): 981-995. |
[3] | 韦乐田, 姜小光, 吴骅, 茹晨. 城市地表热辐射方向性研究进展综述[J]. 地球信息科学学报, 2022, 24(4): 617-630. |
[4] | 刘恒孜, 吕宁, 姜侯, 姚凌. 基于DCT-PLS算法的MODIS LST缺值填补方法研究[J]. 地球信息科学学报, 2022, 24(2): 378-390. |
[5] | 李玉, 张友水. 植被与不透水面的降温和增温效率分析方法[J]. 地球信息科学学报, 2021, 23(9): 1548-1558. |
[6] | 钟雨桐, 韦晶, 郑月明, 阎福礼. 基于静风期污染物的PM2.5排放清单空间精细化方法[J]. 地球信息科学学报, 2021, 23(11): 1971-1983. |
[7] | 李婉, 牛陆, 陈虹, 吴骅. 基于随机森林算法的地表温度鲁棒降尺度方法[J]. 地球信息科学学报, 2020, 22(8): 1666-1678. |
[8] | 刘艳霞, 冯莉, 田慧慧, 阳少奇. 中国气候舒适度时空分布特征分析[J]. 地球信息科学学报, 2020, 22(12): 2338-2347. |
[9] | 高亮, 杜鑫, 李强子, 王红岩, 张源, 王思远. 融合土地覆盖和土壤水分产品的近地表空气温度空间化方法[J]. 地球信息科学学报, 2020, 22(10): 2023-2037. |
[10] | 陈昭, 罗小波, 高阳华, 叶勤玉, 王书敏. 基于半变异函数的重庆市地表温度空间异质性建模及多尺度特征分析[J]. 地球信息科学学报, 2019, 21(7): 1051-1060. |
[11] | 李娅丽, 汪小钦, 陈芸芝, 王苗苗. 福建省地表温度与植被覆盖度的相关性分析[J]. 地球信息科学学报, 2019, 21(3): 445-454. |
[12] | 侯浩然, 丁凤, 黎勤生. 近20年来福州城市热环境变化遥感分析[J]. 地球信息科学学报, 2018, 20(3): 385-395. |
[13] | 崔晓临, 程贇, 张露, 卫晓庆. 基于DEM修正的MODIS地表温度产品空间插值[J]. 地球信息科学学报, 2018, 20(12): 1768-1776. |
[14] | 王美雅, 徐涵秋. 中国大城市的城市组成对城市热岛强度的影响研究[J]. 地球信息科学学报, 2018, 20(12): 1787-1798. |
[15] | 帅晨, 沙晋明, 林金煌, 季建万, 周正龙, 高尚. 不同下垫面遥感指数与地温关系的空间差异性研究[J]. 地球信息科学学报, 2018, 20(11): 1657-1666. |
|