地球信息科学学报 ›› 2020, Vol. 22 ›› Issue (7): 1437-1448.doi: 10.12082/dqxxkx.2020.190603
收稿日期:
2019-09-28
修回日期:
2019-12-04
出版日期:
2020-07-25
发布日期:
2020-09-25
作者简介:
蒋 瑜(1995— ),男,湖南湘阴人,硕士生,主要研究方向为工程遥感。E-mail:基金资助:
JIANG Yu1(), WU Mingquan2,*(
), LIU Zhengcai1, HUANG Changjun1,3
Received:
2019-09-28
Revised:
2019-12-04
Online:
2020-07-25
Published:
2020-09-25
Contact:
WU Mingquan
Supported by:
摘要:
自“一带一路”倡议提出以来,中国企业在“一带一路”沿线国家投资、承建了大量基础设施项目,这些项目在促进当地经济发展的同时,不可避免地给当地生态环境带来一定的影响。目前国内主要采用统计调查等方法进行监管,缺乏直接的境外工程监管手段。遥感技术能为境外工程项目监管提供新方法、新手段,但地面调查数据难以获取是境外项目监管面临的重要问题。针对该问题,本文以迪拜哈翔清洁能源电站项目为例,结合遥感技术(RS)和地理信息系统(GIS)的优势,提出了一种境外工程的遥感监管方法。① 针对生态环境影响和工程建设进度两项监测内容,建立了遥感监测技术指标体系;② 基于2016—2018年30 m 分辨率的Landsat 8影像和0.5 m分辨率的WorldView-2影像,利用像元二分模型原理、基态修正模型等方法,从植被覆盖度变化、生态空间占用、自然保护区域影响、工程设施建设、施工附属设施变化5个方面对项目生态环境影响和建设进度情况进行监测;最后通过时序影像和监测产品对比,分析了工程建设对生态环境的影响和工程建设进度情况。结果表明:① 该方法能反映工程在建设过程中对周围生态环境的影响,能准确地监测出迪拜哈翔清洁能源电站的建设进度,对“一带一路”其它境外项目建设的监管具有重要参考意义;②项目建设后无大面积植被覆盖度降低的现象,植被覆盖度总体由低区间向高区间转化;③ 项目施工占用沙地1.4780 km2,港口建设填海面积达0.1246 km2,0.0604 km2的湿地被改为施工沉淀池,没有占用耕地;④ 通过转移海底珊瑚、设置防淤帘、预留海龟产卵通道等措施有效地减少了该项目对Jebel Ali海洋生态保护区的影响;⑤ 工程设施和附属设施建设进展明显,建筑面积增加了0.14 km2,港口建设围堰总长达3.785 km。
蒋瑜, 邬明权, 刘正才, 黄长军. 基于遥感的迪拜哈翔清洁能源电站项目监管方法[J]. 地球信息科学学报, 2020, 22(7): 1437-1448.DOI:10.12082/dqxxkx.2020.190603
JIANG Yu, WU Mingquan, LIU Zhengcai, HUANG Changjun. Supervision Method of Hassyan Clean Energy Power Station Project in Dubai based on Remote Sensing[J]. Journal of Geo-information Science, 2020, 22(7): 1437-1448.DOI:10.12082/dqxxkx.2020.190603
[1] | 柳钦火, 吴俊君, 李丽, 等. “一带一路”区域可持续发展生态环境遥感监测[J]. 遥感学报, 2018,22(4):686-708. |
[ Liu Q H, Wu J J, Li L, et al. Ecological environment monitoring for sustainable development goals in the Belt and Road region[J]. Journal of Remote Sensing, 2018,22(4):686-708. ] | |
[2] | 潜旭明. “一带一路”倡议背景下中国的国际能源合作[J]. 国际观察, 2017(3):129-146. |
[ Qian X M. China's international energy cooperation under the background of the Belt and Road Initiative[J]. International Review, 2018(3):129-146. ] | |
[3] |
Mulder VL, Bruin SD, Schaepman ME, et al. The use of remote sensing in soil and terrain mapping: A review[J] Geoderma, 2011,162(1):1-19.
doi: 10.1016/j.geoderma.2010.12.018 |
[4] |
Adami M, Bernardes S, Arai E, et al. Seasonality of vegetation types of South America depicted by moderate resolution imaging spectroradiometer (MODIS) time series[J]. International Journal of Applied Earth Observations and Geoinformation, 2018,69:148-163.
doi: 10.1016/j.jag.2018.02.010 |
[5] |
李健锋, 叶虎平, 张宗科, 等. 基于Landsat影像的斯里兰卡内陆湖库水体时空变化分析[J]. 地球信息科学学报, 2019,21(5):781-788.
doi: 10.12082/dqxxkx.2019.180643. |
[ Li J F, Ye H P, Zhang Z K, et al. Spatiotemporal change analysis of Sri Lanka Inland water based on landsat imagery[J]. Journal of Geo-information Science, 2019,21(5):781-788. ] | |
[6] |
Zhu X L, Liu D S. Improving forest aboveground biomass estimation using seasonal Landsat NDVI time-series[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015,102:222-231.
doi: 10.1016/j.isprsjprs.2014.08.014 |
[7] | 牛铮, 李加洪, 高志海, 等. 《全球生态环境遥感监测年度报告》进展与展望[J]. 遥感学报, 2018,22(4):672-685. |
[ Niu Z, Li J H, Gao Z H, et al. Progress and future of China's annual report on remote sensing monitoring of global ecosystem and environment[J]. Journal of Remote Sensing, 2018,22(4):672-685. ] | |
[8] | Wu B F, Zhang L, Yuan C, et al. Remote Sensing Monitoring in the Three Gorges Reservoir Area[C]. Chang'an University. Proceedings of 2011 International Symposium on Water Resource and Environmental Protection(ISWREP 2011) VOL.04. Xi’an: Chang'an University, 2011:2471-2474. |
[9] |
Ge Y, Chen Y H, Jia Y X, et al. Dynamic Monitoring the Infrastructure of Major Ports in Sri Lanka by Using Multi-temporal High Spatial Resolution Remote Sensing Images[J]. Journal of Geographical Sciences, 2018,28(7):973-984.
doi: 10.1007/s11442-018-1516-7 |
[10] | 杨娟, 贾周云, 邵靖净. 基于BJ-1的环渤海区海岸工程变化遥感监测研究[J]. 科技与创新, 2016(9):12-13. |
[ Yang J, Jia Z Y, Shao J J. Remote sensing monitoring of coastal engineering changes in Bohai rim region based on BJ-1[J]. Science and Technology & Innovation, 2016(9):12-13. ] | |
[11] | 李序春, 徐惠民, 索安宁. 基于高空间分辨率遥感影像的港口区集约利用监测与评估——以渤海5个典型港区为例[J]. 应用海洋学学报, 2019,38(1):126-134. |
[ Li X C, Xu H M, Suo A N. Monitoring and assessment of intensive utilization of port area based on high spatial resolution remote sensing image with case study of five typical ports in the Bohai Sea[J]. Journal of Applied Oceanography, 2019,38(1):126-134. ] | |
[12] | Alden M G. Remote sensing techniques for monitoring coal surface mining and reclamation in the powder river basin[D]. Columbus: Ohio University, 2009. |
[13] | He D K, Le B T, Xiao D, et al. Coal mine area monitoring method by machine learning and multispectral remote sensing images[J]. Infrared Physics and Technology, 2019,103:1-6. |
[14] |
Mendonça D C R, Fabian S C. Urban vegetation loss and ecosystem services: The influence on climate regulation and noise and air pollution[J]. Environmental pollution (Barking, Essex : 1987), 2019,245:844-852.
doi: 10.1016/j.envpol.2018.10.114 |
[15] |
Ricardo F B E, Alexandre R D S, Eduardo M P J, et al. Space-time analysis of vegetation trends and drought occurrence in domain area of tropical forest[J]. Journal of environmental management, 2019,246:384-396.
doi: 10.1016/j.jenvman.2019.05.097 pmid: 31195258 |
[16] | Beurs K M D, Henebry G M. A land surface phenology assessment of the northern polar regions using MODIS reflectance time series[J]. Canadian Journal of Remote Sensing, 2010,36(sup1):87-110. |
[17] |
Testa S, Soudani K, Boschetti L, et al. MODIS-derived EVI, NDVI and WDRVI time series to estimate phenological metrics in French deciduous forests[J]. International Journal of Applied Earth Observations and Geoinformation, 2018,64:132-144.
doi: 10.1016/j.jag.2017.08.006 |
[18] | 刘广峰, 吴波, 范文义, 等. 基于像元二分模型的沙漠化地区植被覆盖度提取——以毛乌素沙地为例[J]. 水土保持研究, 2007(2):268-271. |
[ Liu G F, Wu B, Fan W Y, et al. Extraction of vegetation coverage in desertification regions based on the dimidiate pixel model: A case study in Maowusu Sandland[J]. Research of Soil and Water Conservation, 2007(2):268-271. ] | |
[19] |
Leprieur C, Verstraete M M, Pinty B. Evaluation of the performance of various vegetation indices to retrieve vegetation cover from AVHRR data[J]. Remote Sensing Review, 1994,10:265-284.
doi: 10.1080/02757259409532250 |
[20] |
陈晋, 陈云浩, 何春阳, 等. 基于土地覆盖分类的植被覆盖率估算亚像元模型与应用[J]. 遥感学报, 2001,5(6):416-422.
doi: 10.11834/jrs.20010603 |
[ Chen J, Chen Y H, He C Y, et al. Sub-pixel model for vegetation fraction estimation based on land cover classification[J]. Journal of Remote Sensing, 2001,5(6):416-422. ] | |
[21] | Zribi M, Le He Garat-mascle S, Taconet O D, et al. Derivation of wild vegetation cover density in semi-arid regions: ERS2 SAR evaluation[J]. International Journal of Remote Sensing, 2003,(24):1335-1352. |
[22] |
Carlson T N, Ripley D A. On the relation between NDVI, fractional vegetation cover and leaf area index[J]. Remote Sensing of Environment, 1997,62(3):241-252.
doi: 10.1016/S0034-4257(97)00104-1 |
[23] |
Rundquist B C. The influence of canopy green vegetation fraction on spectral measurements over native tall grass prairie[J]. Remote Sensing of Environment, 2002,81(1):129-135.
doi: 10.1016/S0034-4257(01)00339-X |
[24] | 李苗苗, 吴炳方, 颜长珍, 等. 密云水库上游植被覆盖度的遥感估算[J]. 资源科学, 2004,26(4):153-159. |
[ Li M M, Wu B F, Yan C Z, et al. Estimation of vegetation fraction in the upper basin of Miyun reservoir by remote sensing[J]. Resources Science, 2004,26(4):153-159. ] | |
[25] |
Toure S I, Stow D A, Shih H C, et al. Land cover and land use change analysis using multi-spatial resolution data and object-based image analysis[J]. Remote Sensing of Environment, 2018,210:259-268.
doi: 10.1016/j.rse.2018.03.023 |
[26] |
Wang L, Li C C, Ying Q, et al. China's urban expansion from 1990 to 2010 determined with satellite remote sensing[J]. Chinese Science Bulletin, 2012,57(22):2802-2812.
doi: 10.1007/s11434-012-5235-7 |
[27] |
徐凯健, 田庆久, 杨闫君, 等. 遥感土地覆被分类的空间尺度响应研究[J]. 地球信息科学学报, 2018,20(2):246-253.
doi: 10.12082/dqxxkx.2018.170360 |
[ Xu K J, Tian Q J, Yang Y J, et al. Response of spatial scale for land cover classification of remote sensing[J]. Journal of Geo-information Science, 2018,20(2):246-253. ] | |
[28] | Hu Y B, Wu H R, Zhu H J. The application of base state with amendments model in land survey data management. In: Bian F., Xie Y. (eds) Geo-Informatics in Resource Management and Sustainable Ecosystem. Berlin, Heidelberg: Springer, 2015:715-723. |
[1] | 罗永臻, 董春, 张玉. 人口空间化适宜格网评价方法研究[J]. 地球信息科学学报, 2023, 25(5): 896-908. |
[2] | 李俊明, 周佳卉, 李杰, 高佳源. 基于贝叶斯统计的黄河流域生态文明与共同富裕的时空协同演进研究[J]. 地球信息科学学报, 2023, 25(4): 766-782. |
[3] | 梅强, 胡勤友, 刘希亮, 赵瑞娜, 杨春, 王鹏, 戚玉玲, 杨洋, 袁启睿. 全球LNG海上运输网络演化及中国贸易现状分析[J]. 地球信息科学学报, 2022, 24(9): 1701-1716. |
[4] | 王卷乐, 魏海硕, 严欣荣, 张敏, 韩雪华. “一带一路”经济走廊资源环境信息开发利用研究进展与展望[J]. 地球信息科学学报, 2022, 24(6): 1019-1033. |
[5] | 郭欢, 王伟玺, 李晓明, 汤圣君, 邓媛媛. 兼顾共性基础与个性特色的智慧园区评价方法[J]. 地球信息科学学报, 2022, 24(6): 1061-1072. |
[6] | 李福香, 刘殿锋, 孔雪松, 刘耀林. 基于动态模拟视角与共享社会经济路径的多情景县域可持续发展潜力评价[J]. 地球信息科学学报, 2022, 24(4): 684-697. |
[7] | 张泽, 胡宝清, 丘海红, 邓雁菲. 桂西南喀斯特-北部湾海岸带生态环境脆弱性时空分异与驱动机制研究[J]. 地球信息科学学报, 2021, 23(3): 456-466. |
[8] | 刘小波, 王玉宽, 李明. 国土空间开发适宜性评价的理论、方法与技术应用[J]. 地球信息科学学报, 2021, 23(12): 2097-2110. |
[9] | 龚围, 李丽, 柳钦火, 辛晓洲, 彭志晴, 邬明权, 牛铮, 田海峰. “一带一路”区域水电站工程生态环境影响遥感监测[J]. 地球信息科学学报, 2020, 22(7): 1424-1436. |
[10] | 叶虎平, 廖小罕, 何贤强, 岳焕印. 斯里兰卡近海海洋生态环境变化遥感监测分析[J]. 地球信息科学学报, 2020, 22(7): 1463-1475. |
[11] | 邬明权, 王标才, 牛铮, 黄文江. 工程项目地球大数据监测与分析理论框架及研究进展[J]. 地球信息科学学报, 2020, 22(7): 1408-1423. |
[12] | 杜德林, 黄洁, 王姣娥. 基于多源数据的中国智慧城市发展状态评价[J]. 地球信息科学学报, 2020, 22(6): 1294-1306. |
[13] | 郭文杰, 秦昆, 毛宗福, 王一喆, 汪瑶, 许刚, 马露. “一带一路”成员国居民健康状况的时空统计分析[J]. 地球信息科学学报, 2020, 22(5): 1133-1141. |
[14] | 杨艳昭, 郎婷婷, 张超, 贾琨. 基于GIS的“一带一路”地区气温插值方法比较研究[J]. 地球信息科学学报, 2020, 22(4): 867-876. |
[15] | 徐新良, 李嘉豪, 申志成, 王世宽. “一带一路”沿线国家农田生态系统脆弱性及其对气候变化的响应[J]. 地球信息科学学报, 2020, 22(4): 877-886. |
|