地球信息科学学报 ›› 2020, Vol. 22 ›› Issue (6): 1282-1293.doi: 10.12082/dqxxkx.2020.190623
周亚娟1,2, 赵志远1,2,3, 吴升1,2,3,*(), 方志祥4, 陈佐旗1,2,3
收稿日期:
2019-10-24
修回日期:
2020-12-12
出版日期:
2020-06-25
发布日期:
2020-08-25
作者简介:
周亚娟(1993— ),女,安徽安庆人,硕士生,从事地理信息服务与时空数据挖掘研究。E-mail: 1184310214@qq.com
基金资助:
ZHOU Yajuan1,2, ZHAO Zhiyuan1,2,3, WU Sheng1,2,3,*(), FANG Zhixiang4, CHEN Zuoqi1,2,3
Received:
2019-10-24
Revised:
2020-12-12
Online:
2020-06-25
Published:
2020-08-25
Contact:
WU Sheng
Supported by:
摘要:
潜在自行车出行是指可能会使用自行车作为交通工具的出行,评估潜在自行车出行需求能够帮助指导城市自行车资源配置方案的优化。大规模手机位置数据蕴含丰富的人群移动信息,而且具有大样本、低成本的特点,能够用于评估城市潜在自行车出行需求。本文结合自行车出行的时间和距离特征,提出一种基于大规模手机位置数据的潜在自行车出行需求评估方法。该方法以单次出行为分析单元,从手机用户的轨迹中提取出具有短距离出行特征和公共交通接驳出行特征的移动轨迹段,并根据该移动轨迹段评估潜在自行车出行需求。基于该方法,利用上海市大规模手机位置数据评估上海市潜在自行车出行需求并分析其时空分布特征,发现在空间上,潜在自行车短距离出行需求主要分布在城市中心和郊区的商业中心,而公共交通接驳的自行车需求主要分布在郊区。在时间上,上午,自行车出行需求从非中心城区向中心城区聚拢;晚上,上海市自行车出行骑车与停车需求从中心城区向非中心城区扩散。
周亚娟, 赵志远, 吴升, 方志祥, 陈佐旗. 基于大规模手机位置数据的城市潜在自行车出行需求评估[J]. 地球信息科学学报, 2020, 22(6): 1282-1293.DOI:10.12082/dqxxkx.2020.190623
ZHOU Yajuan, ZHAO Zhiyuan, WU Sheng, FANG Zhixiang, CHEN Zuoqi. Estimating the Potential Demand for Bicycle Travel based on Large-scale Mobile Phone Location Data[J]. Journal of Geo-information Science, 2020, 22(6): 1282-1293.DOI:10.12082/dqxxkx.2020.190623
[1] | 董红召, 吴满金, 刘冬旭, 等. 城市公共自行车系统自然租赁需求估算方法[J]. 浙江大学学报(工学版), 2016,50(2):265-270. |
[ Dong H Z, Wu M J, Liu D X, et al. Estimation method of natural demand of urban public bicycle system[J]. Journal of Zhejiang University(Engineering Science), 2016,50(2):265-270. ] | |
[2] | 何流, 陈大伟, 李旭宏, 等. 城市公共自行车租赁点布局优化模型[J]. 武汉理工大学学报(交通科学与工程版), 2012,36(1):129-133. |
[ HeL, ChenDW, LiXH, et al. An optimization model of the layout of public bike rental stations[J]. Journal of Wuhan University of Technology(Transportation Science & Engineering). 2012,36(1):129-133. ] | |
[3] | García-Palomares J C, Gutiérrez J, Latorre M. Optimizing the location of stations in bike-sharing programs: A GIS approach[J]. Applied Geography, 2012,35(1-2):235-246. |
[4] | Zhou Y, Wang L, Rong Z, et al. A Markov chain based demand prediction model for stations in bike sharing systems[J]. Mathematical Problems in Engineering, 2018,2018:1-8. |
[5] | Zhang J, Pan X, Li M, et al. Bicycle-sharing system analysis and trip prediction [C]//2016 17th IEEE international conference on mobile data management (MDM). IEEE, 2016,1:174-179. |
[6] | 林燕平, 窦万峰. 基于ARIMA模型的城市公共自行车需求量短期预测方法研究[J]. 南京师范大学学报(工程技术版), 2016,16(3):36-40. |
[ Lin Y P, Dou W F. Research on short-term prediction method of demand number in urban public bicycle based on the ARIMA model[J]. Journal of Nanjing Normal University (Engineering Technology Edition). 2016,16(3):36-40. ] | |
[7] | Kaltenbrunner A, Meza R, Grivolla J, et al. Urban cycles and mobility patterns: Exploring and predicting trends in a bicycle-based public transport system[J]. Pervasive & Mobile Computing, 2010,6(4):455-466. |
[8] | Blondel V D, Decuyper A, Krings G. A survey of results on mobile phone datasets analysis[J]. EPJ Data Science, 2015,4(1):1-55. |
[9] | Yue Y, Lan T, Yeh A G O, et al. Zooming into individuals to understand the collective: A review of trajectory-based travel behaviour studies[J]. Travel Behaviour and Society, 2014,1(2):69-78. |
[10] | Steenbruggen J, Tranos E, Nijkamp P. Data from mobile phone operators: A tool for smarter cities?[J]. Telecommunications Policy, 2015,39(3-4):335-346. |
[11] | Zhou X, Yeh A G O, Yue Y. Spatial variation of self-containment and jobs-housing balance in Shenzhen using cellphone big data[J]. Journal of Transport Geography, 2018,68:102-108. |
[12] | 许宁, 尹凌, 胡金星. 从大规模短期规则采样的手机定位数据中识别居民职住地[J]. 武汉大学学报·信息科学版, 2014,39(6):750-756. |
[ Xu N, Yin L, Hu J X. Identifying home-work locations from short-term, large-scale, and regularly sampled mobile phone tracking data[J]. Geomatics and Information Science of Wuhan University, 2014,39(6):750-756. ] | |
[13] | 冉斌. 手机数据在交通调查和交通规划中的应用[J].城市交通,2013(1):78-87,38. |
[ Ran B. Use of cellphone data in travel survey and transportation planning[J]. Urban Transport of China, 2013(1):78-87,38. ] | |
[14] | Fang Z, Yang X, Xu Y, et al. Spatiotemporal model for assessing the stability of urban human convergence and divergence patterns[J]. International Journal of Geographical Information Science, 2017,31(11):2119-2141. |
[15] | 徐金垒, 方志祥, 萧世伦, 等. 城市海量手机用户停留时空分异分析——以深圳市为例[J]. 地球信息科学学报, 2015,17(2):197-205. |
[ Xu J L, Fang Z X, Xiao S L, et al. Thespatio-temporal heterogeneityanalysis of massive urban mobile phone users' staybehavior: A case study of Shenzhen city[J]. Journal of Geo-information Science, 2015,17(2):197-205. ] | |
[16] | 钮心毅, 康宁, 王垚, 等. 手机信令数据支持城镇体系规划的技术框架[J]. 地理信息世界, 2019,26(1):18-24. |
[ Niu X Y, Kang N, Wang Y, el at. A technical framework for urban system planning using mobile phone signaling data[J]. Geomatics World, 2019,26(1):18-24. ] | |
[17] |
Mao L, Yin L, Song X, et al. Mapping intra-urban transmission risk of dengue fever with big hourly cellphone data[J]. Acta Tropica, 2016,162:188-195.
pmid: 27364921 |
[18] | Çolak S, Alexander L P, Alvim B G, et al. Analyzing cell phone location data for urban travel[J]. Transportation Research Record Journal of the Transportation Research Board, 2015,2526(3):126-135. |
[19] | Xu Y, Shaw S-L, Fang Z, et al. Estimating potential demand of bicycle trips from mobile phone data: An anchor-point based approach[J]. ISPRS International Journal of Geo-information, 2016,5(8):131-154. |
[20] | Alvares L O, Bogorny V, Kuijpers B, et al. A model for enriching trajectories with semantic geographical information [C]//Proceedings of the 15th annual ACM international symposium on Advances in geographic information systems. 2007: 1-8. |
[21] | Spaccapietra S, Parent C, Damiani M L, et al. A conceptual view on trajectories[J]. Data & Knowledge Engineering, 2008,65(1):126-146. |
[22] | Wang, Wu, Zhang, et al. Indoor location prediction method for shopping malls based on location sequence similarity[J]. ISPRS International Journal of Geo-Information, 2019,8(11):517. |
[23] | Widhalm P, Yang Y, Ulm M, et al. Discovering urban activity patterns in cell phone data[J]. Transportation, 2015,42(4):597-623. |
[24] | Yang X, Shaw S L, Zhao Z, et al. Another tale of two cities: understanding human activity space using actively tracked cellphone location data[J]. Annals of the American Association of Geographers, 2016,106(2). |
[25] | Zhao Z, Shaw S L, Xu Y, et al. Understanding the bias of call detail records in human mobility research[J]. International Journal of Geographical Information Science, 2016,30(9):1738-1762. |
[26] | Horn C, Klampfl S, Cik M, et al. Detecting outliers in cell phone data[J]. Transportation Research Record: Journal of the Transportation Research Board, 2014,2405(1):49-56. |
[27] | 颜永国. 上海市中心城区居民出行方式调查[J].统计科学与实践,2012(8):12-13. |
[ Yan Y G. A survey of the travel modes of the residents in the central urban area of Shanghai[J]. Statistical Science and Practice, 2012(8):12-13. ] | |
[28] | 陆锡明, 顾啸涛. 上海市第五次居民出行调查与交通特征研究[J].城市交通,2011(5):1-7. |
[ Lu X M, Gu X T. The fifth travel survey of residents in shanghai and characteristics analysis[J]. Urban Transport of China, 2011(5):1-7. ] | |
[29] | Xu Y, Chen D, Zhang X, et al. Unravel the landscape and pulses of cycling activities from a dockless bike-sharing system[J]. Computers, Environment and Urban Systems, 2019,75:184-203. |
[30] | 邓力凡, 谢永红, 黄鼎曦. 基于骑行时空数据的共享单车设施规划研究[J]. 规划师, 2017,33(10):82-88. |
[ Deng L F, Xie Y H, Huang D X. Bicycle-sharing facility planning base on riding spatio-temporal data[J]. Planners, 2017,33(10):82-88. ] |
[1] | 张羽民, 赵俊杰, 梅强, 刘希亮, 陈卓栋, 李建强, 王少华, 石宇良, 柴金川, 高雨瑶, 井小倩, 杨念迪, 马小焱. 一种面向细粒度空气质量分指数(IAQI)预测的时空因果卷积模型[J]. 地球信息科学学报, 2023, 25(1): 115-130. |
[2] | 潘雨飘, 赵翔, 王静, 张亦清, 刘耀林. 基于SMOTE-RF算法的村庄发展类型识别方法研究[J]. 地球信息科学学报, 2023, 25(1): 163-176. |
[3] | 黄盛, 李卫江, 朱梦茹, 刘振. 降雨事件对上海地铁通勤客流时空影响的精细尺度研究[J]. 地球信息科学学报, 2022, 24(2): 249-262. |
[4] | 马强, 王亮绪, 龚鑫, 李科. 城市功能区视角下基于POI数据的公共厕所空间布局合理性研究[J]. 地球信息科学学报, 2022, 24(1): 50-62. |
[5] | 张雪霞, 吴升, 赵志远, 王鹏洲, 陈佐旗, 方志祥. 基于手机信令数据的城市小活动空间人群空间分布特征[J]. 地球信息科学学报, 2021, 23(8): 1433-1445. |
[6] | 冯叶涵, 陈亮, 贺晓冬. 基于百度街景的SVF计算及其在城市热岛研究中的应用[J]. 地球信息科学学报, 2021, 23(11): 1998-2012. |
[7] | 周琦, 高长春. 城市创意产业空间动态集聚演化的计算与可视优化方法[J]. 地球信息科学学报, 2020, 22(5): 1033-1048. |
[8] | 陈锦, 谭凯, 张卫国. 基于地面三维激光扫描强度数据的潮滩表层含水量估算[J]. 地球信息科学学报, 2020, 22(2): 290-297. |
[9] | 陈锐, 陈明剑, 姚翔, 王建光. 利用导航大数据挖掘城市热点区域关联性[J]. 地球信息科学学报, 2019, 21(6): 826-835. |
[10] | 宋小冬, 王园园, 杨钰颖, 张开翼, 钮心毅. 通勤距离对职住分离的统计验证[J]. 地球信息科学学报, 2019, 21(11): 1699-1709. |
[11] | 杨喜平, 方志祥, 尹凌. 城市空间结构要素与人群聚散稳定性的关联性探索[J]. 地球信息科学学报, 2018, 20(6): 791-798. |
[12] | 费茉莉, 刘苇航, 王席, 李梦雅, 黄清雨, 王军. 城市暴雨内涝模拟模型优化与精度验证[J]. 地球信息科学学报, 2017, 19(7): 895-900. |
[13] | 李明晓, 陈洁, 张恒才, 仇培元, 刘康, 陆锋. 上海市精细时空尺度人口分布估计与特征分析[J]. 地球信息科学学报, 2017, 19(6): 800-807. |
[14] | 李翔, 陈振杰, 吴洁璇, 汪文祥, 曲乐安, 周琛, 韩肖锋. 基于夜间灯光数据和空间回归模型的城市常住人口格网化方法研究[J]. 地球信息科学学报, 2017, 19(10): 1298-1305. |
[15] | 杨喜平, 方志祥, 赵志远, 萧世伦, 尹凌. 城市人群聚集消散时空模式探索分析——以深圳市为例[J]. 地球信息科学学报, 2016, 18(4): 486-492. |
|