地球信息科学学报 ›› 2020, Vol. 22 ›› Issue (7): 1463-1475.doi: 10.12082/dqxxkx.2020.190677
叶虎平1,3,5(), 廖小罕1,3,4,*(
), 何贤强2, 岳焕印1,3,4
收稿日期:
2019-11-11
修回日期:
2020-04-24
出版日期:
2020-07-25
发布日期:
2020-09-25
通讯作者:
廖小罕
E-mail:yehp@igsnrr.ac.cn;liaoxh@igsnrr.ac.cn
作者简介:
叶虎平(1983— ),男,浙江义乌人,助理研究员,主要从事海洋水色遥感与水体光学模型和无人机遥感应用研究。E-mail:基金资助:
YE Huping1,3,5(), LIAO Xiaohan1,3,4,*(
), HE Xianqiang2, YUE Huanyin1,3,4
Received:
2019-11-11
Revised:
2020-04-24
Online:
2020-07-25
Published:
2020-09-25
Contact:
LIAO Xiaohan
E-mail:yehp@igsnrr.ac.cn;liaoxh@igsnrr.ac.cn
Supported by:
摘要:
斯里兰卡是海上丝绸之路沿线重要的节点国家,其周边海域生态环境变化与经济发展、休闲生活和食品安全密切相关。利用2002—2017年的MODIS遥感反演产品对斯里兰卡岛周边海域、关键节点港口科伦坡的生态环境参数年际变化规律分别进行分析和2003—2012年的MERIS遥感反射率产品对保克海峡进行水体类型时空分析,结论如下:① 研究区内光合作用有效辐射高值出现在马纳尔湾,海域沿岸浮游植物生物量相对较高,与海表温度负相关,外海浮游植物生物量极低,与透明度负相关。② 科伦坡港附近水温(海表温度)、海面光照强度(光合作用有效辐射)、水体清洁度(海水透明度)、海洋食物网基础的浮游植物生物量(叶绿素浓度)和浮游植物净初级生产力最大值分别出现在4月、3月、3月、8月、7月,致灾因素重点关注8月潜在的赤潮。③ 保克海峡浑浊带的源头是印度的卡里梅尔角,由高韦里河携带大量泥沙造成。这有助于了解和认识高时空变化的保克海峡及斯里兰卡周边海域在不同时间-空间的海洋生态环境。
叶虎平, 廖小罕, 何贤强, 岳焕印. 斯里兰卡近海海洋生态环境变化遥感监测分析[J]. 地球信息科学学报, 2020, 22(7): 1463-1475.DOI:10.12082/dqxxkx.2020.190677
YE Huping, LIAO Xiaohan, HE Xianqiang, YUE Huanyin. Remote Sensing Monitoring and Variation Analysis of Marine Ecological Environment in Coastal Waters of Sri Lanka[J]. Journal of Geo-information Science, 2020, 22(7): 1463-1475.DOI:10.12082/dqxxkx.2020.190677
[1] | Robinson I S, Antoine D, Darecki M, et al. Remote sensing of shelf sea ecosystems—State of the art and perspective[M]. European Science Foundation Marine Board: Ostend, Belgium, 2008,12:1-18. |
[2] | 《关于推进绿色“一带一路”建设的指导意见》(环境保护部、外交部、发展改革委、商务部联合发布),[EB/OL].[2018-11-30]. https://www.yidaiyilu.gov.cn/zchj/qwfb/12477.htm. |
[ Guiding opinions on promoting green "one belt and one road" construction, Jointly issued by the Ministry of environmental protection, the Ministry of foreign affairs, the development and Reform Commission and the Ministry of Commerce. [2018-11-30]. https://www.yidaiyilu.gov.cn/zchj/qwfb/12477.htm. | |
[3] | Sathyendranath S. Phytoplankton Functional Types from Space[R]. Reports of the International Ocean-Colour Coordinating Group, No.15, IOCCG, Dartmouth, Canada. 2014. |
[4] |
Ibarbalz F M, Henry N, Manoela C, et al. Global Trends in Marine Plankton Diversity across Kingdoms of Life[J]. Cell, 2019,179:1084-1097.
doi: 10.1016/j.cell.2019.10.008 pmid: 31730851 |
[5] |
Blondeau patissieR D, Gower JFR, Dekker AG, et al. A review of ocean color remote sensing methods and statistical techniques for the detection, mapping and analysis of phytoplankton blooms in coastal and open oceans[J]. Progress In Oceanography, 2014,123:123-144.
doi: 10.1016/j.pocean.2013.12.008 |
[6] | Greb S, Dekker A, Binding C. Earth Observations in Support of Global Water Quality Monitoring[M]. IOCCG Report Series, No. 17, International Ocean Colour Coordinating Group, Dartmouth, Canada, 2018. |
[7] | Kirk J T O. Light and Photosynthesis in Aquatic Ecosystems[M]. Cambridge: Cambridge University Press, 2010:1-95. |
[8] |
BurtT P, Weerasinghe K D N. Rainfall distributions in Sri Lanka in time and space: An analysis based on daily rainfall data[J]. Climate, 2014,2:242-263.
doi: 10.3390/cli2040242 |
[9] | Zubair L, Suryachandra A R, Yamagata T. Modulation of Sri Lankan Maha rainfall by the Indian Ocean Dipole[J]. Geophysical Research Letters, 2003,35:1-4. |
[10] |
Behrenfeld M J, Malley R T O', Boss E S, et al. Revaluating ocean warming impacts on global phytoplankton[J]. Nature Climate Change, 2016,6:323-330.
doi: 10.1038/nclimate2838 |
[11] | Frouin R, McPherson J, Ueyoshi K, et al. A time series of photosynthetically available radiation at the ocean surface from Sea WiFS and MODIS data[J]. Proceedings Of SPIE, 2012,852519:1-112. |
[12] | 何贤强, 潘德炉, 黄二辉, 等. 中国海透明度卫星遥感监测[J]. 中国工程科学, 2004,6(9):33-37. |
[ He X Q, Pan D L, Huang E H, et al. Monitor of water transparency in the China Sea by using satellite remote sensing[J]. Engineering Science, 2004,6(9):33-37. ] | |
[13] |
Behrenfeld M J, Falkowski P G. A consumer's guide to phytoplankton primary productivity models[J]. Limnology and Oceanography, 1997,42:1479-1491.
doi: 10.4319/lo.1997.42.7.1479 |
[14] |
Valente A, Sathyendranath S, Brotas V, et al. A compilation of global bio-optical in situ data for ocean colour satellite applications - version two[J]. Earth System Science Data, 2019,11:1037-1068.
doi: 10.5194/essd-11-1037-2019 |
[15] | O’Reilly J E and Werdell P J. Chlorophyll algorithms for ocean color sensors - OC4, OC5 & OC6[J]. Remote Sensing Environment, 2019,07229:32-47. |
[16] | Madhubhashini Elepathage T S, Tang D. Hydro-climatic variations analysis with remote sensing data on Sri Lankan ocean waters[J]. Journal of Marine Biology & Oceanography, 2019,8:1-12. |
[17] |
Vinayachandran P N, Mathew S. Phytoplankton bloom in the Bay of Bengal during the northeast monsoon and its intensification by cyclones[J]. Geophysical Research Letters, 2003,30(11):1572.
doi: 10.1029/2002GL016717 |
[18] |
Ye H P, Li J S, Li T J, et al. Spectral classification of the Yellow Sea and implications for coastal ocean color remote sensing[J]. Remote Sensing, 2016,8(4):1-23.
doi: 10.3390/rs8010001 |
[19] | Chisholm , Hugh . Palk Straits. Encyclopædia Britannica. 20(11th ed.). Cambridge University Press.635. [EB/OL]. [2019-11-20]. https://en.wikipedia.org/wiki/Palk_Strait. |
[20] | Clift P D, Plumb R A. The Asian Monsoon: Causes, History and Effects[M]. Cambridge University Press: Cambridge, UK, 2008. |
[21] | Phytoplankton Bloom Persists Between India and Sri Lanka. 2009[EB/OL]. [2019-11-20]. http://www.eosnap.com/tag/palk-strait/page/3/. |
[22] | Rameshkumar S, Rajaram R. Chapter 22 - Impact of seaweed farming on socio-economic development of a fishing community in Palk Bay, Southeast Coast of India[M]. Coastal Zone Management, 2019:501-513. |
[23] | Suryanarayan V. The India-Sri Lanka Fisheries Dispute: Creating a Win-Win in the Palk Bay. 2016. Carnegie-india.[EB/OL].[2019-11-20] https://carnegieindia.org/2016/09/09/india-sri-lanka-fisheries-dispute-creating-win-win-in-palk-bay-pub-64538. |
[24] | Periyasamy C, Anantharaman P, Balasubramanian T. Sustainable utilization of biological resources-seaweed farming a good option[J]. Internet Journal Application Bioresearch, 2013,18:17-22. |
[25] | 黄德凯, 徐秀良. 印度—斯里兰卡海洋渔业争端探析[J]. 边界与海洋研究, 2016,1(3):116-123. |
[ Huang D K, Xu X L. An analysis of india: Sri Lanka Marine fisheries dispute[J]. Journal of Boundary and Ocean Studies, 2016,1(3):116-123. ] | |
[26] |
He X Q, Bai Y, Chen C, et al. Satellite views of the episodic terrestrial material transport to the southern Okinawa Trough driven by typhoon[J]. Journal of Geophysical Research: Oceans, 2014,119:4490-4504.
doi: 10.1002/2014JC009872 |
[27] |
Behrenfeld M J, O'Malley R T, Siegel D A, et al. Climate-driven trends in contemporary ocean productivity[J]. Nature, 2006,444(7120):752-755.
doi: 10.1038/nature05317 pmid: 17151666 |
[28] | Doerffer R. Protocols for the validation of MERIS water products[M]. European Space Agency: Geesthacht, GKSS Research Center, Germany, 2002. |
[29] |
Wickramagamage P. Seasonality and spatial pattern of rainfall of Sri Lanka: Exploratory factor analysis[J]. International Journal of Climatology, 2010,30(8):1235-1245
doi: 10.1002/joc.1977 |
[30] |
Roxy M K, Modi A, Murtugudde R. A reduction in marine primary productivity driven by rapid warming over the tropical Indian Ocean[J]. Geophysical Research Letters, 2016,43(2):826-833.
doi: 10.1002/grl.v43.2 |
[31] | Brown O B, Minnett P J. MODIS infrared sea surface temperature algorithm (Version 2.0)[M]. Algorithm Theoretical Basis Document, 1999, 1-98. |
[32] |
Mélin F, Vantrepotte V. How optically diverse is the coastal ocean?[J]. Remote Sensing Environment, 2015,160,235-251.
doi: 10.1016/j.rse.2015.01.023 |
[33] | 周淑贞, 张如一, 张超. 气象学与气候学[M]. 北京: 高等教育出版社, 1997. |
[ Zhou S Z, Zhang R Y, Zhang C. Meteorology and Climatology[M]. Beijing: Higher Education Publishing, 1997. ] | |
[34] |
Roxy M K, Ritika K, Terray P, et al. Drying of Indian subcontinent by rapid Indian Ocean warming and a weakening land-sea thermal gradient[J]. Nature Communications, 2015,6, 7423.
doi: 10.1038/ncomms8423 pmid: 26077934 |
[35] |
Boyce D G, Lewis M R, Worm B. Global phytoplankton decline over the past century[J]. Nature, 2010,466(7306):591-596.
doi: 10.1038/nature09268 pmid: 20671703 |
[1] | 葛咏, 刘梦晓, 胡姗, 任周鹏. 时空统计学在贫困研究中的应用及展望[J]. 地球信息科学学报, 2021, 23(1): 58-74. |
[2] | 赵青松, 兰安军, 范泽孟, 杨青. 贵州省不同地貌形态类型土壤侵蚀强度变化的定量分析[J]. 地球信息科学学报, 2020, 22(7): 1555-1566. |
[3] | 高旺旺, 冯建中, 白林燕, 杨建华, 郭雷风, 李华林, 崔梦瑞. 海南岛气溶胶时空变化及来源追溯[J]. 地球信息科学学报, 2020, 22(7): 1532-1543. |
[4] | 董文钱, 董良, 向琳, 陶海军, 赵传虎, 曲寒冰. 基于贝叶斯时空模型的城管事件时空变化分析[J]. 地球信息科学学报, 2020, 22(5): 1073-1082. |
[5] | 贾梦姝, 张宇, 潘婷婷, 吴文周, 苏奋振. 面向互联网信息抽取的海洋环境灾害链本体构建——以台风灾害为例[J]. 地球信息科学学报, 2020, 22(12): 2289-2303. |
[6] | 徐新良, 申志成, 李嘉豪, 王世宽. “海上丝绸之路”主要海域热带气旋时空分布特征及其危险性[J]. 地球信息科学学报, 2020, 22(12): 2383-2392. |
[7] | 周玲, 李云梅, 赵焕, 房晟忠, 颜翔, 吕恒. 滇池湖滨带植被时空变化及其对滇池总磷浓度的影响[J]. 地球信息科学学报, 2020, 22(10): 1946-1958. |
[8] | 洪恬林, 李云梅, 吕恒, 孟斌, 毕顺, 周玲. 基于MODIS数据的太湖浮游植物物候变化及其对水表温度的响应[J]. 地球信息科学学报, 2020, 22(10): 1935-1945. |
[9] | 高黎明,张乐乐. 青海湖流域植被盖度时空变化研究[J]. 地球信息科学学报, 2019, 21(9): 1318-1329. |
[10] | 李健锋, 叶虎平, 张宗科, 孔金玲, 魏显虎, Somasundaram Deepakrishna, 王法溧. 基于Landsat影像的斯里兰卡内陆湖库水体时空变化分析[J]. 地球信息科学学报, 2019, 21(5): 781-788. |
[11] | 周日平. 中国荒漠化分区与时空演变[J]. 地球信息科学学报, 2019, 21(5): 675-687. |
[12] | 黄耀欢, 李中华, 朱海涛. 作物胁迫无人机遥感监测研究评述[J]. 地球信息科学学报, 2019, 21(4): 512-523. |
[13] | 李娅丽, 汪小钦, 陈芸芝, 王苗苗. 福建省地表温度与植被覆盖度的相关性分析[J]. 地球信息科学学报, 2019, 21(3): 445-454. |
[14] | 郑海亮, 房世峰, 刘成程, 吴金华, 杜加强. 青藏高原月NDVI时空动态变化及其对气候变化的 响应[J]. 地球信息科学学报, 2019, 21(2): 201-214. |
[15] | 陈斌, 王宏志, 徐新良, 陈德超, 武新梅, 付阳阳. 武汉市主城区用地结构遥感监测及动态变化[J]. 地球信息科学学报, 2019, 21(2): 293-303. |
|