地球信息科学学报 ›› 2020, Vol. 22 ›› Issue (12): 2304-2316.doi: 10.12082/dqxxkx.2020.190766
田乃满1,3(), 兰恒星1,2,*(
), 伍宇明1, 李郎平1
收稿日期:
2019-12-11
修回日期:
2020-04-03
出版日期:
2020-12-25
发布日期:
2021-02-25
通讯作者:
兰恒星
E-mail:tiannm@lreis.ac.cn;lanhx@lreis.ac.cn
作者简介:
田乃满(1996— ),男,内蒙古通辽人,博士生,主要从事地质灾害与地理信息科学研究。E-mail: 基金资助:
TIAN Naiman1,3(), LAN Hengxing1,2,*(
), WU Yuming1, LI Langping1
Received:
2019-12-11
Revised:
2020-04-03
Online:
2020-12-25
Published:
2021-02-25
Contact:
LAN Hengxing
E-mail:tiannm@lreis.ac.cn;lanhx@lreis.ac.cn
Supported by:
摘要:
机器学习模型广泛应用于区域性滑坡易发性分析。模型的选择关系到评价结果的可信度、准确率和稳定性。现有滑坡易发性分析模型对比研究侧重模型的预测精度。模型的稳定性和数据量敏感性对机器学习模型的性能评估同样非常重要。本文以福建省南平市蔡源流域为研究区,以四川省绵阳市北川县为验证区,从预测精度、稳定性和数据量敏感性3个方面深入对比BP(Back Propagation)人工神经网络模型和CART(Classification and Regression Tree)决策树模型在滑坡易发性分析中的效果,主要结论如下:① 在逐渐增加一定数量训练样本的过程中,BP人工神经网络模型预测精度的增长率更高。在蔡源流域内,当训练样本数量增加10 000时,BP人工神经网络模型的预测精度上升5.22%,CART决策树模型的预测精度上升2.11%。② BP人工神经网络的预测精度高于CART决策树模型,且较为稳定。在100组数据集上,BP人工神经网络模型验证集预测精度的均值和验证集滑坡样本预测精度的均值分别为81.60%和84.86%,高于CART决策树模型的72.97%和76.59%。与此同时,BP人工神经网络模型对应预测精度的标准差分别是0.32%和0.37%,小于CART决策树模型的0.35%和0.67%。③ BP人工神经网络模型分析的滑坡易发区相比CART决策树模型,更接近实际滑坡的空间分布。最后,北川县的验证实验也出现了相同的现象。
田乃满, 兰恒星, 伍宇明, 李郎平. 人工神经网络和决策树模型在滑坡易发性分析中的性能对比[J]. 地球信息科学学报, 2020, 22(12): 2304-2316.DOI:10.12082/dqxxkx.2020.190766
TIAN Naiman, LAN Hengxing, WU Yuming, LI Langping. Performance Comparison of BP Artificial Neural Network and CART Decision Tree Model in Landslide Susceptibility Prediction[J]. Journal of Geo-information Science, 2020, 22(12): 2304-2316.DOI:10.12082/dqxxkx.2020.190766
[1] | 王治华. 滑坡图像自动识别浅议[J]. 地球信息科学学报, 2013,15(5):726-733,782. |
[ Wang Z H. A preliminary discussion on landslide pattern recognition[J]. Journal of Geo-information Science, 2013,15(5):726-733,782. ] | |
[2] | 黄润秋. 20世纪以来中国的大型滑坡及其发生机制[J]. 岩石力学与工程学, 2007,26(3):433-454. |
[ Huang R Q. Large-scale landslides and their sliding mechanisms in China since the 20th century[J]. Chinese Journal of Rock Mechanics and Engineering, 2007,26(3):433-454. ] | |
[3] | 章诗芳, 王玉芬, 贾蓓, 等. 中国2005-2016年地质灾害的时空变化及影响因素分析[J]. 地球信息科学学报, 2017,19(12):1567-1574. |
[ Zhang S F, Wang Y F, Jia B, et al. Spatial-temporal changes and influencing factors of geologic disasters from 2005 to 2016 in China[J]. Journal of Geo-information Science, 2017,19(12):1567-1574. ] | |
[4] | Corominas J, Westen C V, Frattini P, et al. Recommendations for the quantitative analysis of landslide risk[J]. Bulletin of Engineering Geology and the Environment, 2014,73(2):209-263. |
[5] | 陶舒, 胡德勇, 赵文吉, 等. 基于信息量与逻辑回归模型的次生滑坡灾害敏感性评价——以汶川县北部为例[J]. 地理研究, 2010,29(9):1594-1605. |
[ Tao S, Hu D Y, Zhao W J, et al. Susceptibility assessment of secondary landslides triggered by earthquakes: A case study of northern Wenchuan[J]. Geographical Research, 2010,29(9):1594-1605. ] | |
[6] | 林金煌, 张岸, 邓超, 等. 闽三角城市群地质灾害敏感性评价[J]. 地球信息科学学报, 2018,20(9):1286-1297. |
[ Lin J H, Zhang A, Deng C, et al. Sensitivity assessment of geological hazards in unban agglomeration of Fujian Delta Region[J]. Journal of Geo-information Science, 2018,20(9):1286-1297. ] | |
[7] | Li L P, Lan H X, Guo C B, et al. A modified frequency ratio method for landslide susceptibility assessment[J]. Landslides, 2017,14(2):727-741. |
[8] | 杨根云, 周伟, 方教勇. 基于信息量模型和数据标准化的滑坡易发性评价[J]. 地球信息科学学报, 2018,20(5):674-683. |
[ Yang G Y, Zhou W, Fang J Y. Assessment of landslide susceptibility based on information quantity model and data normalization[J]. Journal of Geo-information Science, 2018,20(5):674-683. ] | |
[9] | 许冲, 徐锡伟. 逻辑回归模型在玉树地震滑坡危险性评价中的应用与检验[J]. 工程地质学报, 2012,20(3):326-333. |
[ Xu C, Xu X W. Logistic regression model and its validation for hazard mapping of landslides triggered by Yushu earthquake[J]. Journal of Engineering Geology, 2012,20(3):326-333. ] | |
[10] | 叶超凡, 张一驰, 熊俊楠, 等. 湖南省山丘区小流域山洪灾害危险性评价[J]. 地球信息科学学报, 2017,19(12):1593-1603. |
[ Ye C F, Zhang Y C, Xiong J N, et al. Hazard assessment of mountain torrent disaster in small watersheds of the hilly areas of Hunan Province[J]. Journal of Geo-information Science, 2017,19(12):1593-1603. ] | |
[11] | Caniani D, Pascale S, Sdao F, et al. Neural networks and landslide susceptibility: A case study of the urban area of Potenza[J]. Natural Hazards, 2008,45(1):55-72. |
[12] | 许冲, 徐锡伟. 基于GIS与ANN模型的地震滑坡易发性区划[J]. 地质科技情报, 2012,31(3):116-121. |
[ Xu C, Xu X W. GIS and ANN model for earthquake triggered landslides susceptibility zonation[J]. Geological Science and Technology Information, 2012,31(3):116-121. ] | |
[13] | Yeon Y K, Han J G, Ryu K H. Landslide susceptibility mapping in Injae, Korea, using a decision tree[J]. Engineering Geology, 2010,116(3):274-283. |
[14] | 戴福初, 姚鑫, 谭国焕. 滑坡灾害空间预测支持向量机模型及其应用[J]. 地学前缘, 2007,14(6):153-159. |
[ Dai F C, Yao X, Tan G H. Landslide susceptibility mapping using support vector machines[J]. Earth Science Frogtiers, 2007,14(6):153-159. ] | |
[15] | 李远远, 梅红波, 任晓杰, 等. 基于确定性系数和支持向量机的地质灾害易发性评价[J]. 地球信息科学学报, 2018,20(12):1699-1709. |
[ Li Y Y, Mei H B, Ren X J, et al. Geological disaster susceptibility evaluation based on certainty factor and support vector machine[J]. Journal of Geo-information Science, 2018,20(12):1699-1709. ] | |
[16] | 兰恒星, 王苓涓, 周成虎. 地理信息系统支持下的滑坡灾害分析模型研究[J]. 工程地质学报, 2002(4):421-427. |
[ Lan H X, Wang L J, Zhou C H, et al. Study on GIS-aided model for analysis of landslide hazard[J]. Journal of Engineering Geology, 2002(4):421-427. ] | |
[17] | Falaschi F, Giacomelli F, Federici P R, et al. Logistic regression versus artificial neural networks: Landslide susceptibility evaluation in a sample area of the Serchio River valley, Italy[J]. Natural Hazards, 2009,50(3):551-569. |
[18] | Yilmaz I. Comparison of landslide susceptibility mapping methodologies for Koyulhisar, Turkey: Conditional probability, logistic regression, artificial neural networks, and support vector machine[J]. Environmental Earth Sciences, 2010,61(4):821-836. |
[19] | Park S, Choi C, Kim B, et al. Landslide susceptibility mapping using frequency ratio, analytic hierarchy process, logistic regression, and artificial neural network methods at the Inje area, Korea[J]. Environmental Earth Sciences, 2013,68(5):1443-1464. |
[20] | 邱海军, 曹明明, 刘闻, 等. 基于三种不同模型的区域滑坡灾害敏感性评价及结果检验研究[J]. 地理科学, 2014,34(1):110-115. |
[ Qiu H J, Cao M M, Liu W, et al. The susceptibility assessment of landslide and its calibration of the models based on three different models[J]. Scientia Geographica Sinica, 2014,34(1):110-115. ] | |
[21] | Nourani V, Pradhan B, Ghaffari H, et al. Landslide susceptibility mapping at Zonouz Plain, Iran using genetic programming and comparison with frequency ratio, logistic regression, and artificial neural network models[J]. Natural Hazards, 2014,71(1):523-547. |
[22] | Park I, Lee S. Spatial prediction of landslide susceptibility using a decision tree approach: A case study of the Pyeongchang area, Korea[J]. International Journal of Remote Sensing, 2014,35(16):6089-6112. |
[23] | Youssef A M, Pourghasemi H R, Pourtaghi Z S, et al. Landslide susceptibility mapping using random forest, boosted regression tree, classification and regression tree, and general linear models and comparison of their performance at Wadi Tayyah Basin, Asir Region, Saudi Arabia[J]. Landslides, 2016,13(5):839-856. |
[24] | Chen W, Xie X, Wang J, et al. A comparative study of logistic model tree, random forest, and classification and regression tree models for spatial prediction of landslide susceptibility[J]. Catena, 2017,151:147-160. |
[25] | Wang L J, Guo M, Sawada K, et al. A comparative study of landslide susceptibility maps using logistic regression, frequency ratio, decision tree, weights of evidence and artificial neural network[J]. Geosciences Journal, 2016,20(1):117-136. |
[26] | Pourghasemi H R, Rahmati O. Prediction of the landslide susceptibility: Which algorithm, which precision?[J]. Catena, 2018,162:177-192. |
[27] | Rumelhart D E, Hinton G E, Williams R J. Learning representations by back-propagating errors[J]. Nature, 1986,323(6088):533-536. |
[28] | 周志华. 机器学习[M]. 北京: 清华大学出版社, 2016. |
[ Zhou Z H. Machine learning[M]. Beijing: Tsinghua University Press, 2016. ] | |
[29] | Hecht-Nielsen R. Kolmogorov's mapping neural network existence theorem[C]. Proceedings of the international conference on Neural Networks. New York: IEEE Press, 1987,3:11-14. |
[30] | 伍宇明, 兰恒星, 高星, 等. 一种基于贝叶斯理论的区域斜坡稳定性评价模型[J]. 工程地质学报, 2014,22(6):1227-1233. |
[ Wu Y M, Lan H X, Gao X, et al. Bayes theory based model for regional slope stability analysis[J]. Journal of Engineering Geology, 2014,22(6):1227-1233. ] | |
[31] | 兰恒星, 伍法权, 周成虎, 等. 基于GIS的云南小江流域滑坡因子敏感性分析[J]. 岩石力学与工程学报, 2002(10):1500-1506. |
[ Lan H X, Wu F Q, Zhou C H, et al. Analysis on susceptibility of GIS based landslide triggering factors in Yunnan Xiaojiang watershed[J]. Chinese Journal of Rock Mechanics and Engineering, 2002(10):1500-1506. ] | |
[32] | 杨城, 林广发, 张明锋, 等. 基于DEM的福建省土质滑坡敏感性评价[J]. 地球信息科学学报, 2016,18(12):1624-1633. |
[ Yang C, Lin G F, Zhang M F, et al. Soil landslide susceptibility assessment based on DEM[J]. Journal of Geo-information Science, 2017,19(12):1623-1633. ] | |
[33] | 李郎平, 兰恒星, 郭长宝, 等. 基于改进频率比法的川藏铁路沿线及邻区地质灾害易发性分区评价[J]. 现代地质, 2017,31(5):911-929. |
[ Li L P, Lan H X, Guo C B, et al. Geohazard susceptibility assessment along the Sichuan-Tibet railway and its adjacent area using an improved frequency ratio method[J]. Geoscienc, 2017,31(5):911-929. ] | |
[34] | 林齐根, 刘燕仪, 刘连友, 等. 支持向量机与Newmark模型结合的地震滑坡易发性评估研究[J]. 地球信息科学学报, 2017,19(12):1623-1633. |
[ Lin Q G, Liu Y Y, Liu L Y, et al. Earthquake-triggered landslide susceptibility assessment based on support vector machine combined with Newmark displacement model[J]. Journal of Geo-information Science, 2017,19(12):1623-1633. ] | |
[35] | 陈霄燕, 潘军, 邢立新, 等. 桂林-阳朔地区DEM地形特征与岩性相关性分析及分类研究[J]. 地球信息科学学报, 2019,21(12):1867-1876. |
[ Chen X Y, Pan J, Xing L X, et al. Correlation analysis and classification of DEM topographic features and lithology in Guilin-Yangshuo, China[J]. Journal of Geo-information Science, 2019,21(12):1867-1876. ] | |
[36] | 袁东, 池永翔, 程刚. 闽北地区不同植被类型下滑坡体土层入渗性能研究[J]. 长江科学院院报, 2010,27(5):8-12. |
[ Yuan D, Chi Y X, Cheng G. Research on soil infiltration performances under different vegetations in landslides of Northern Fujian Province[J]. Journal of Yangtze River Scientific Research Institute, 2010,27(5):8-12. ] | |
[37] |
Basheer I A, Hajmeer M N. Artificial neural networks: fundamentals, computing, design, and application[J]. Journal of Microbiological Methods, 2000,43(1):3-31.
doi: 10.1016/s0167-7012(00)00201-3 pmid: 11084225 |
[38] | Xu C, Xu X W, Yao X, et al. Three (nearly) complete inventories of landslides triggered by the May 12, 2008 Wenchuan Mw 7.9 earthquake of China and their spatial distribution statistical analysis[J]. Landslides, 2013,11(3):441-461. |
[1] | 郭瑞, 李素敏, 陈娅男, 袁利伟. 基于SBAS-InSAR的矿区采空区潜在滑坡综合识别方法[J]. 地球信息科学学报, 2019, 21(7): 1109-1120. |
[2] | 李海丽, 柯长青. 北极熊栖息地稳定性的遥感评估方法[J]. 地球信息科学学报, 2018, 20(9): 1327-1337. |
[3] | 杨喜平, 方志祥, 尹凌. 城市空间结构要素与人群聚散稳定性的关联性探索[J]. 地球信息科学学报, 2018, 20(6): 791-798. |
[4] | 杨根云, 周伟, 方教勇. 基于信息量模型和数据标准化的滑坡易发性评价[J]. 地球信息科学学报, 2018, 20(5): 674-683. |
[5] | 李云君, 刘志红, 吕远洋, 柳锦宝, 王平. 四川省滑坡灾害气象预警模型建立与验证[J]. 地球信息科学学报, 2017, 19(7): 941-949. |
[6] | 王景云, 杨军, 杨俊兴, 雷梅, 万小铭, 周小勇, 陈同斌, 张红日, 赵相伟. 基于空间自相关和概率论的土壤重金属异常值的 识别方法[J]. 地球信息科学学报, 2017, 19(5): 605-612. |
[7] | 陈天博, 胡卓玮, 魏铼, 胡顺强. 无人机遥感数据处理与滑坡信息提取[J]. 地球信息科学学报, 2017, 19(5): 692-701. |
[8] | 苏巧梅, 赵尚民, 郭建立. 霍西煤矿区地表滑坡灾害敏感性数值建模与等级划分[J]. 地球信息科学学报, 2017, 19(12): 1613-1622. |
[9] | 林齐根, 刘燕仪, 刘连友, 王瑛. 支持向量机与Newmark模型结合的地震滑坡易发性评估研究[J]. 地球信息科学学报, 2017, 19(12): 1623-1633. |
[10] | 牛全福, 冯尊斌, 党星海, 张映雪, 李月锋. 黄土区滑坡研究中地形因子的选取与适宜性分析[J]. 地球信息科学学报, 2017, 19(12): 1584-1592. |
[11] | 杨城, 林广发, 张明锋, 张容焱, 孙笑古. 基于DEM的福建省土质滑坡敏感性评价[J]. 地球信息科学学报, 2016, 18(12): 1624-1633. |
[12] | 王治华. 滑坡图像自动识别浅议[J]. 地球信息科学学报, 2013, 15(5): 726-733,782. |
[13] | 齐力, 赵彦锋, 巫振富, 张路伟. 几种土壤属性制图方法的稳定性与影响因素分析[J]. 地球信息科学学报, 2012, 14(3): 305-312. |
[14] | 郭承燕, 贾建华, 马荣华*, 许金朵, 邢永超, 吕春光. 滑坡灾害预测预报信息共享平台[J]. 地球信息科学学报, 2012, 14(2): 199-208. |
[15] | 刘延国, 王青, 王军. 官司河流域景观稳定性的研究[J]. 地球信息科学学报, 2012, 14(1): 137-142. |
|