地球信息科学学报 ›› 2020, Vol. 22 ›› Issue (8): 1607-1616.doi: 10.12082/dqxxkx.2020.190783
朱守杰1(), 杜世宏2,*(
), 李军1, 商硕硕2, 杜守基2
收稿日期:
2019-12-18
修回日期:
2020-03-06
出版日期:
2020-08-25
发布日期:
2020-10-25
通讯作者:
杜世宏
E-mail:zsj1500756018@163.com;smilegis@163.com
作者简介:
朱守杰(1995— ),男,安徽六安人,硕士生,主要从事多源数据融合、人口地理研究。E-mail:基金资助:
ZHU Shoujie1(), DU Shihong2,*(
), LI Jun1, SHANG Shuoshuo2, DU Shouji2
Received:
2019-12-18
Revised:
2020-03-06
Online:
2020-08-25
Published:
2020-10-25
Contact:
DU Shihong
E-mail:zsj1500756018@163.com;smilegis@163.com
Supported by:
摘要:
精细尺度的城镇人口空间分布是分析人类-资源-环境相互关系的重要指标。本文提出了一种融合地理空间大数据和高分辨率遥感数据估计精细尺度城镇人口分布的方法。通过对比各指标与人口相关性,选取R2>0.7的建筑面积、到道路距离、夜间灯光强度、商服中心、EAHSI指数、幼儿园、公园、小学、加油站、医院、公交车站、长途汽车站作为影响人口分布的变量因子。结合城市功能区数据确定人口分布区域,利用随机森林模型对宁波市2018年人口数据进行了500 m格网空间化,从而得出宁波市城镇人口空间分布图。最后,基于随机森林模型的变量因子重要性分析宁波市人口空间分布的影响因素。研究结果表明,本文所提出的城镇人口分布模型在街道尺度的估算精度为81.2%,平均相对误差MRE为0.29、RMSE为3279.89;网格级别的MRE为17.16,RMSE为1149.9,因此模型能精确地反演城镇内部街道人口分布信息。通过对变量因子重要性进行比较,发现建筑面积重要性约为0.22,对宁波市人口估算影响最大;到道路的距离、夜间灯光强度、商服中心、EAHSI(Elevation-Adjusted Human Settlement Index)、幼儿园、公园对宁波市人口估算具有重要作用。本文在格网级别进行的人口分布精度验证对于研究城市精细人口分布具有重大意义。
朱守杰, 杜世宏, 李军, 商硕硕, 杜守基. 融合多源空间数据的城镇人口分布估算[J]. 地球信息科学学报, 2020, 22(8): 1607-1616.DOI:10.12082/dqxxkx.2020.190783
ZHU Shoujie, DU Shihong, LI Jun, SHANG Shuoshuo, DU Shouji. Estimating Population Distribution in Cities and Towns though Fusing Multi-source Spatial Data[J]. Journal of Geo-information Science, 2020, 22(8): 1607-1616.DOI:10.12082/dqxxkx.2020.190783
[1] |
Ehrlich D, Melchiorri M, Florczyk A, et al. Remote sensing derived built-up area and population density to quantify global exposure to five natural hazards over time[J]. Remote Sensing, 2018,10(9):1378-1397.
doi: 10.3390/rs10091378 |
[2] |
Gaughan A E, Stevens F R, Linard C, et al. High resolution population distribution maps for southeast asia in 2010 and 2015[J]. PLoS One, 2013,8(2):e55882.
doi: 10.1371/journal.pone.0055882 pmid: 23418469 |
[3] |
Bakillah M, Liang S, Mobasheri A, et al. Fine-resolution population mapping using OpenStreetMap points-of-interest[J]. International Journal of Geographical Information Science, 2014,28(9):1940-1963.
doi: 10.1080/13658816.2014.909045 |
[4] |
Ural S, Hussain E, Shan J. Building population mapping with aerial imagery and GIS data[J]. International Journal of Applied Earth Observation and Geoinformation, 2011,13(6):841-852.
doi: 10.1016/j.jag.2011.06.004 |
[5] |
Holt J B, Lo C P, Hodler T W. Dasymetric estimation of population density and areal interpolation of census data[J]. Cartography and Geographic Information Science, 2004,31(2):103-121.
doi: 10.1559/1523040041649407 |
[6] |
Bai Z, Wang J, Wang M, et al. Accuracy assessment of multi-source gridded population distribution datasets in China[J]. Sustainability, 2018,10(5):1363-1377.
doi: 10.3390/su10051363 |
[7] |
Zhang Y, Gao J, Ni S. Use of normalized difference built-up index in automatically mapping urban areas from TM imagery[J]. International Journal of Remote Sensing, 2003,24(3):583-594.
doi: 10.1080/01431160304987 |
[8] |
Azar D, Graesser J, Engstrom R, et al. Spatial refinement of census population distribution using remotely sensed estimates of impervious surfaces in Haiti[J]. International Journal of Remote Sensing, 2010,31(21):5635-5655.
doi: 10.1080/01431161.2010.496799 |
[9] |
Ural S, Hussain E, Shan J. Building population mapping with aerial imagery and GIS data[J]. International Journal of Applied Earth Observation and Geoinformation, 2011,13(6):841-852.
doi: 10.1016/j.jag.2011.06.004 |
[10] | 张秋媛, 彭明春, 王崇云, 等. 基于DMSP/OLS夜间灯光数据的贵州省人口分布及影响因子分析[J]. 云南大学学报(自然科学版), 2019,41(5):992-1000. |
[ Zhang Q Y, Peng M C, Wang C Y, et al. Population distribution of Guizhou Province based on DMSP/OLS night lighting data[J]. Journal of Yunnan University (Natural Sciences Edition, 2019,41(5):992-1000. ] | |
[11] | Stevens F R, Gaughan A E, Linard C, et al. Disaggregating census data for population mapping using random forests with remotely-sensed and ancillary data[J]. PLoS One, 2015,10(2):e107042. |
[12] |
Mossoux S, Kervyn M, Soulé H, et al. Mapping population distribution from high resolution remotely sensed imagery in a data poor setting[J]. Remote Sensing, 2018,10(9):1409.
doi: 10.3390/rs10091409 |
[13] | Yao Y, Liu X, Li X, et al. Mapping fine-scale population distributions at the building level by integrating multisource geospatial big data[J]. International Journal of Geographical Information Science, 2017,31(6):1220-1244. |
[14] |
Liu L, Peng Z, Wu H, et al. Exploring urban spatial feature with dasymetric mapping based on mobile phone data and LUR-2SFCAe method[J]. Sustainability, 2018,10(7):2432.
doi: 10.3390/su10072432 |
[15] | 淳锦, 张新长, 黄健锋, 等. 基于POI数据的人口分布格网化方法研究[J]. 地理与地理信息科学, 2018,34(4):89-95,130. |
[ Chun J, Zhang X Z, Huang J F, et al. A gridding method of redistributing population based on POIs[J]. Geography and Geo-information science, 2018,34(4):89-95,130. ] | |
[16] | Zhang X, Du S, Wang Q. Hierarchical semantic cognition for urban functional zones with VHR satellite images and POI data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017,132:170-184. |
[17] | Yang X, Yue W, Gao D. Spatial improvement of human population distribution based on multi-sensor remote-sensing data: an input for exposure assessment[J]. International Journal of Remote Sensing, 2013,34(15):5569-5583. |
[18] | Elvidge C D, Baugh K E, Zhizhin M, et al. Why VIIRS data are superior to DMSP for mapping nighttime lights[J]. Proceedings of the Asia Pacific Advanced Network, 2013,35:62-69. |
[19] |
Liu H, Zhang Y, Zhang X, et al. Monitoring vegetation coverage in Tongren from 2000 to 2016 based on Landsat7 ETM+ and Landsat8[J]. Anais da Academia Brasileira de Ciencias, 2018,90(3):2721-2730.
doi: 10.1590/0001-3765201820170737 pmid: 30304217 |
[20] | Morais J D, Faria T S, Elmiro M A T, et al. Altimetry assessment of ASTER GDEM v2 and SRTM v3 digital elevation models: A case study in urban area of belo horizonte, MG, BRAZIL[J]. Boletim De Ciências Geodésicas, 2017,23(4):654-668. |
[21] | Yao Y, Li X, Liu X, et al. Sensing spatial distribution of urban land use by integrating Points of Interest and Google Word2Vec model[J]. International Journal of Geographical Information Science, 2016,31(4):1-24. |
[22] | 马忠东. 改革开放40年中国人口迁移变动趋势——基于人口普查和1%抽样调查数据的分析[J]. 中国人口科学, 2019(3):16-28,126. |
[ Ma Z D. Trends of migration in china in four-decades of economic reform: an analysis based on censuses and 1% national population surveys[J]. Chinese Journal of Population Science, 2019(3):16-28,126. ] | |
[23] | 白燕英, 高聚林, 张宝林. 基于Landsat8影像时间序列NDVI的作物种植结构提取[J]. 干旱区地理, 2019,42(4):893-901. |
[ Bai Y Y, Gao J L, Zhang B L. Extraction of crop planting structure based on time-series NDVI of Landsat8 images[J]. Arid Land Geography, 2019,42(4):893-901. ] | |
[24] | Liang S, Liu T, Chen Z, et al. Remote sensing monitoring of drought based on landsat8 and NDVI-Ts characteristic space method[J]. International Conference on Computer & Computing Technologies in Agriculture, 2017,545:116-125. ] |
[25] | Li K, Chen Y, Li Y. The random forest-based method of fine-resolution population spatialization by using the international space station nighttime photography and social sensing data[J]. Remote Sensing, 2018,10(10):1650. |
[26] | Breiman L, Breiman L, Cutler R A. Random forests machine learning[J]. Journal of Clinical Microbiology, 2001,2:199-228. |
[27] | 胡云锋, 赵冠华, 张千力. 基于夜间灯光与LUC数据的川渝地区人口空间化研究[J]. 地球信息科学学报, 2018,20(1):68-78. |
[ Hu Y F, Zhao G H, Zhang Q L. Spatial distribution of population data based on nighttime light and LUC data in the Sichuan Chongqing region[J]. Journal of Geo-information Science, 2018,20(1):68-78. ] |
[1] | 帅艳民, 马现伟, 曲歌, 邵聪颖, 刘涛, 刘守民, 黄华兵, 谷玲霄, 拉提帕·吐尔汗江, 梁继, 李玲. 协同多时相波谱特征的不透水面信息级联提取[J]. 地球信息科学学报, 2021, 23(1): 171-186. |
[2] | 赵鹏军, 曹毓书. 基于多源地理大数据与机器学习的地铁乘客出行目的识别方法[J]. 地球信息科学学报, 2020, 22(9): 1753-1765. |
[3] | 朱惠, 张清凌, 张珊. 1992—2017年基于夜光遥感的中亚社会经济发展时空特征分析[J]. 地球信息科学学报, 2020, 22(7): 1449-1462. |
[4] | 湛东升, 谢春鑫, 张文忠, 丁亮, 许婧雪, 甄茂成. 基于累计机会可达性的北京城市公共服务设施复合功能识别[J]. 地球信息科学学报, 2020, 22(6): 1320-1329. |
[5] | 曹元晖, 刘纪平, 王勇, 王良杰, 吴文周, 苏奋振. 基于POI数据的城市建筑功能分类方法研究[J]. 地球信息科学学报, 2020, 22(6): 1339-1348. |
[6] | 洪建智, 郭碧云, 付迎春, 聂欢. 新型城镇化的人地耦合异速增长分析方法[J]. 地球信息科学学报, 2020, 22(5): 1049-1062. |
[7] | 王晓洁, 王卷乐, 薛润生. 基于普查和手机定位数据的乡镇尺度人口空间化方法研究[J]. 地球信息科学学报, 2020, 22(5): 1095-1105. |
[8] | 赵耀龙, 巢子豪. 历史GIS的研究现状和发展趋势[J]. 地球信息科学学报, 2020, 22(5): 929-944. |
[9] | 余卓渊, 闾国年, 张夕宁, 贾远信, 周成虎, 葛咏, 吕可晶. 全息高精度导航地图: 概念及理论模型[J]. 地球信息科学学报, 2020, 22(4): 760-771. |
[10] | 柳林, 梁斯毅, 宋广文. 基于潜在受害者动态时空分布的街面接触型犯罪研究[J]. 地球信息科学学报, 2020, 22(4): 887-897. |
[11] | 秦臣臣, 陈传法, 杨娜, 高原, 王梦樱. 基于ICESat/GLAS的山东省SRTM与ASTER GDEM高程精度评价与修正[J]. 地球信息科学学报, 2020, 22(3): 351-360. |
[12] | 王春, 徐燕, 江岭, 赵明伟. 规则格网DEM局地坡面凸凹性精度分析[J]. 地球信息科学学报, 2020, 22(3): 361-369. |
[13] | 赵明伟, 金永林, 江岭, 王春, 杨灿灿, 徐燕. 多模型协同下的城郊地区DEM构建方法研究[J]. 地球信息科学学报, 2020, 22(3): 389-398. |
[14] | 何飞, 刘兆飞, 姚治君. Jason-2测高卫星对湖泊水位的监测精度评价[J]. 地球信息科学学报, 2020, 22(3): 494-504. |
[15] | 胡最, 王慧. 多因素约束的城市空间扩张元胞自动机构建及其应用研究[J]. 地球信息科学学报, 2020, 22(3): 616-627. |
|