地球信息科学学报 ›› 2020, Vol. 22 ›› Issue (10): 1983-1995.doi: 10.12082/dqxxkx.2020.200212
董佳丹1(), 陈晓玲1, 蔡晓斌2, 徐强强1, 关宇廷1, 李婷慧1, 刘诗燕2, 陈芳1,*(
)
收稿日期:
2020-04-30
修回日期:
2020-08-29
出版日期:
2020-10-25
发布日期:
2020-12-25
通讯作者:
陈芳
E-mail:jiajiadong@whu.edu.cn;harwitchcf@hotmail.com
作者简介:
董佳丹(1996— ),女,湖北襄阳人,硕士生,主要研究方向为大气遥感。E-mail:基金资助:
DONG Jiadan1(), CHEN Xiaoling1, CAI Xiaobin2, XU Qiangqiang1, GUAN Yuting1, LI Tinghui1, LIU Shiyan2, CHEN Fang1,*(
)
Received:
2020-04-30
Revised:
2020-08-29
Online:
2020-10-25
Published:
2020-12-25
Contact:
CHEN Fang
E-mail:jiajiadong@whu.edu.cn;harwitchcf@hotmail.com
Supported by:
摘要:
2013年以来几次严重的雾霾污染事件引起了公众的广泛关注,此后中国实施了一系列有关大气污染防治的政策、法规和措施来改善大气质量。为了分析近年来中国大气质量的时空变化特征,本文选取2015—2019年生态环境部国控站点监测的大气污染关键参数,对比分析了空气质量指数和6种大气污染物的季均、年均浓度变化结果,并利用组合指标分析法和相关分析法探讨了不同大气污染物之间的相关性。结果表明:① PM2.5、PM10、SO2、CO和NO2浓度和AQI均有明显下降,2019年均浓度较2015年均浓度分别下降4.5%、3.84%、7.86%、3.74%、0.95%,AQI下降了19.31%,同时,O3浓度则上升了0.79%;② 从空间分布来看,中国北方地区PM10、PM2.5、O3、NO2、SO2、CO年均质量浓度和AQI分别比南方地区高25.2%、18.73%、4.95%、17.6%,32.74%、16.17%、28.3%;③ 从季节性变化规律来看,除了O3呈现出夏季浓度高,冬季浓度低外,其他5种污染物和AQI都呈现相反的季节变化规律;④ 总体而言,目前中国大气污染以PM2.5和O3为主,PM2.5与NO2、SO2、CO之间有极显著的正相关关系(r>0.85,p<0.01),而O3与其前体物NO2和CO之间存在显著的负相关关系(r>0.8,p<0.01)。
董佳丹, 陈晓玲, 蔡晓斌, 徐强强, 关宇廷, 李婷慧, 刘诗燕, 陈芳. 基于中国大气环境监测站点的2015—2019年大气质量状况时空变化分析[J]. 地球信息科学学报, 2020, 22(10): 1983-1995.DOI:10.12082/dqxxkx.2020.200212
DONG Jiadan, CHEN Xiaoling, CAI Xiaobin, XU Qiangqiang, GUAN Yuting, LI Tinghui, LIU Shiyan, CHEN Fang. Analysis of the Temporal and Spatial Variation of Atmospheric Quality from 2015 to 2019 based on China Atmospheric Environment Monitoring Station[J]. Journal of Geo-information Science, 2020, 22(10): 1983-1995.DOI:10.12082/dqxxkx.2020.200212
表1
2015—2019年八大综合经济区的4种大气污染物组合比值对比"
PM2.5/PM10 | PM2.5/CO | PM2.5/SO2 | SO2/NO2 | |
---|---|---|---|---|
东北区 | 0.574 | 43.189 | 2.150 | 0.723 |
北部区 | 0.611 | 53.441 | 3.390 | 0.471 |
东部区 | 0.638 | 52.997 | 3.332 | 0.388 |
南部区 | 0.600 | 33.483 | 2.793 | 0.478 |
黄中区 | 0.518 | 43.647 | 2.188 | 0.778 |
长中区 | 0.626 | 46.903 | 3.060 | 0.605 |
西南区 | 0.604 | 40.197 | 2.584 | 0.551 |
西北区 | 0.395 | 44.871 | 2.515 | 0.667 |
中国北方 | 0.540 | 45.760 | 2.517 | 0.690 |
中国南方 | 0.601 | 44.338 | 2.835 | 0.533 |
表2
2015—2019年中国不同大气污染物之间的相关系数"
CO | SO2 | NO2 | O3 | PM10 | PM2.5 | |
---|---|---|---|---|---|---|
CO | 1 | 0.950** | 0.822** | -0.846** | 0.741** | 0.955** |
SO2 | 0.950** | 1 | 0.718** | -0.729** | 0.707** | 0.895** |
NO2 | 0.822** | 0.718** | 1 | -0.828** | 0.799** | 0.879** |
O3 | -0.846** | -0.729** | -0.828** | 1 | -0.581** | -0.815** |
PM10 | 0.741** | 0.707** | 0.799** | -0.581** | 1 | 0.861** |
PM2.5 | 0.955** | 0.895** | 0.879** | -0.815** | 0.861** | 1 |
[1] | Song C B, He J J, Wu L, et al. Health burden attributable to ambient PM2.5 in China[J]. Elsevier Ltd, 2017,223:575-586. |
[2] | 中华人民共和国生态环境部. GB 13223-2011火电厂大气污染物排放标准[S]. 北京: 中国标准出版社, 2012. |
[ Ministry of Ecology and Environment of the People's Republic of China. GB 3095-2011Emission standards for air pollutants from thermal power plants[S]. Beijing: Standards Press of China, 2011. ] | |
[3] | Wu Y, Zhang S J, Hao J M, et al. On-road vehicle emissions and their control in China: A review and outlook[J]. Elsevier B.V, 2017,574:332-349. |
[4] | He J J, Gong S L, Yu Y, et al. Air pollution characteristics and their relation to meteorological conditions during 2014-2015 in major Chinese cities[J]. Elsevier Ltd, 2017,223:484-496. |
[5] | 中华人民共和国生态环境部. GB 3095-2012环境空气质量标准[S]. 北京: 中国标准出版社, 2012. |
[ Ministry of Ecology and Environment of the People's Republic of China. GB 3095-2012 Ambient air quality standard[S]. Beijing: Standards Press of China, 2012. ] | |
[6] | Zhang F Y, Shi Y, Fang D K, et al. Monitoring history and change trends of ambient air quality in China during the past four decades[J]. Pubmed, 2020,260:110031. |
[7] | 汪行东. 城市人口规模、城市密度与环境污染——基于主要城市2003-2014年空气质量面板数据的研究[J]. 湖南第一师范学院学报, 2019,19(3):85-90,104. |
[ Wang X D. Urban population size, urban density and environmental pollution: A study based on air quality panel data of major cities from 2003 to 2014[J]. Journal of Hunan First Normal University, 2019,19(3):85-90,104. ] | |
[8] | 董夏燕, 何庆红. 空气污染与中老年人心理健康的关系研究[J]. 中国经济问题, 2019(5):50-61. |
[ Dong X Y, He Q H. Research on the relationship between air pollution and mental health of middle-aged and elderly people[J]. China Economic Issues, 2019(5):50-61. ] | |
[9] | 刘旖. 中国空气污染的时空分布特征及影响因素分析[D]. 北京:北京交通大学, 2018. |
[ Liu Y. Spatial and temporal distribution characteristics of air pollution in China and analysis of influencing factors[D]. Beijing: Beijing Jiaotong University, 2018. ] | |
[10] | Zhao S P, Yu Y, Yin D Y, et al. Annual and diurnal variations of gaseous and particulate pollutants in 31 provincial capital cities based on in situ air quality monitoring data from China National Environmental Monitoring Center[J]. Pubmed, 2016,86:92-106. |
[11] | Wen X, Chen W W, Chen B, et al. Does the prohibition on open burning of straw mitigate air pollution? An empirical study in Jilin Province of China in the post-harvest season[J]. Elsevier Ltd, 2020,264:110451. |
[12] | Zhang H L, Wang Y G, Hu J L, et al. Relationships between meteorological parameters and criteria air pollutants in three megacities in China[J]. Pubmed , 2015,140:242-254. |
[13] | Song Y, Li Z R, Yang T T, et al. Does the expansion of the joint prevention and control area improve the air quality?-Evidence from China's Jing-Jin-Ji region and surrounding areas[J]. Elsevier Besloten Vennootschap, 2020,706:136034. |
[14] | Liu T, Wang C L, Wang Y Y, et al. Impacts of model resolution on predictions of air quality and associated health exposure in Nanjing, China[J]. Pubmed, 2020,249:126515. |
[15] | 肖悦. 中国空气质量时空分布特征及影响因素分析[D]. 重庆:西南大学, 2018. |
[ Xiao Y. Spatial and temporal distribution characteristics of air quality in China and analysis of influencing factors[D]. Chongqing: Southwest University, 2018. ] | |
[16] | 高赢. 中国八大综合经济区绿色发展绩效及其影响因素研究[J]. 数量经济技术经济研究, 2019,36(9):3-23. |
[ Gao Y. Research on green development performance and its influencing factors of eight comprehensive economic zones in China[J]. Journal of Quantitative and Technological Economics, 2019,36(9):3-23. ] | |
[17] | 严超. 基于ArcGIS的大气污染物中二氧化硫的空间插值方法比较研究[J]. 山东化工, 2019,48(12):215-216. |
[ Yan C. A comparative study of spatial interpolation method for sulfur dioxide in air pollutants based on ArcGis[J]. Shandong Chemical Industry, 2019,48(12):215-216. ] | |
[18] | 丁卉. 三种区域空气质量空间插值方法对比研究[C]. 中国环境科学学会. 2013中国环境科学学会学术年会论文集(第八卷). 中国环境科学学会:中国环境科学学会, 2013: 680-687. |
[ Ding H. A comparative study of three spatial interpolation methods for regional air quality[C]. Chinese Society for Environmental Science. Proceedings of the 2013 annual conference of Chinese society for environmental science (vol. 8). Chinese society for environmental science: Chinese society for environmental science, 2013: 680-687. ] | |
[19] | Zhou X H, Cao Z Y, Ma Y J, et al. Concentrations, correlations and chemical species of PM2.5/PM10 based on published data in China: Potential implications for the revised particulate standard[J]. Pubmed, 2016,144:518-526. |
[20] | Aneja V P, Agarwal A, Roelle P A, et al. Measurements and analysis of criteria pollutants in New Delhi, India[J]. Pubmed, 2001,27(1):35-42. |
[21] | Zhang Y L, Cao F. Fine particulate matter (PM2.5) in China at a city level[J]. Pubmed, 2015,5:14884. |
[22] | 王甜甜, 陈良富, 陶金花, 等. 生物质燃烧对中国东北地区CO浓度的影响研究[J]. 遥感技术与应用, 2016,31(2):297-306. |
[ Wang T T, Chen L F, Tao J H, et al. Effects of biomass combustion on CO concentration in northeast China[J]. Remote Sensing Technology and Application, 2016,31(2):297-306. ] | |
[23] | 马晓勇. 黄河中上游能源化工区(山西)生态环境现状及演变趋势[J]. 环境与可持续发展, 2012,37(6):108-112. |
[ Ma X Y. Current situation and evolution trend of ecological environment in the middle and upper reaches of the Yellow River energy and chemical industry area (shanxi)[J]. Environment and Sustainable Development, 2012,37(6):108-112. ] | |
[24] | 吴兑, 吴晟, 李菲, 等. 粗粒子气溶胶远距离输送造成华南严重大气污染的分析[J]. 中国环境科学, 2011,31(4):540-545. |
[ Wu W, Wu S, Li F, et al. Analysis of severe air pollution in south China caused by long-distance transport of coarse aerosol particles[J]. China Environmental Science, 2011,31(4):540-545. ] | |
[25] | 付宏臣, 孙艳玲, 景悦. 基于地理加权回归模型的新疆地区PM_(2.5)遥感估算[J]. 天津师范大学学报(自然科学版), 2019,39(1):63-70,80. |
[ Fu H C, Sun Y L, Jing Y. Remote sensing estimation of xinjiang region by PM_ (2.5) based on geographical weighted regression mode[J]. Journal of Tianjin Normal University (Natural Science Edition), 2019,39(1):63-70,80. ] | |
[26] | Wang G H, Zhang R Y, Gomez M E, et al. Persistent sulfate formation from London Fog to Chinese haze[J]. Pubmed, 2016,113(48):13630-13635. |
[27] | Yang Y Q, Wang J Z, Gong S L, et al. PLAM-a meteorological pollution index for air quality and its applications in fog-haze forecasts in North China[J]. Copernicus Publications, 2016,16(3):1353-1364. |
[28] | He J J, Gong S L, Yu Y, et al. Air pollution characteristics and their relation to meteorological conditions during 2014-2015 in major Chinese cities[J]. Elsevier Ltd, 2017,223:484-496. |
[29] | 于小红, 封秋娟. 山西冬季二氧化硫地面、高空分布个例分析[J]. 科技与创新, 2017(2):31-33. |
[ Yu X H, Feng Q J. Case study of surface and upper air distribution of sulfur dioxide in winter in shanxi[J]. Science and Technology Innovation, 2017(2):31-33. ] | |
[30] | 李红军, 汤浩. 北疆春季沙尘暴极多与极少年环流场特征[J]. 沙漠与绿洲气象, 2017,11(1):35-40. |
[ Li H Q, Tang H. Characteristics of spring sandstorms in northern xinjiang[J]. Desert and Oasis Meteorology, 2017,11(1):35-40. ] | |
[31] | Daniel L K, Jacob J, Liao H, et al. A two-pollutant strategy for improving ozone and particulate air quality in China[J]. Nature Publishing Group UK, 2019,12(11):906-910. |
[1] | 刘亚溪, 宋辞, 刘起勇, 张知新, 王席, 马佳, 陈晓, 裴韬. 重庆市新型冠状病毒肺炎流行时空特征及其与人群活动性的关系[J]. 地球信息科学学报, 2021, 23(2): 222-235. |
[2] | 张亚, 刘纪平, 周亮, 王勇, 李鹏飞. 基于DBSCAN算法的北京市顺丰快递服务设施集群识别与空间特征分析[J]. 地球信息科学学报, 2020, 22(8): 1630-1641. |
[3] | 姚可桢, 岳书平. 网络大数据下的中国现代食甜习惯空间分布特征及其影响因素研究[J]. 地球信息科学学报, 2020, 22(6): 1202-1215. |
[4] | 曹元晖, 刘纪平, 王勇, 王良杰, 吴文周, 苏奋振. 基于POI数据的城市建筑功能分类方法研究[J]. 地球信息科学学报, 2020, 22(6): 1339-1348. |
[5] | 连丽聪, 万智巍, 鞠民, 贾玉连, 洪祎君, 蒋梅鑫, 曾峰海. 民国中期湖南洞庭湖区耕地空间格局重建[J]. 地球信息科学学报, 2020, 22(5): 989-996. |
[6] | 廖书冰, 蔡宏, 袁艳琼, 张蓓蓓, 李义平. 夜间灯光数据表征的区域经济发展水平对老年人高血压与Ⅱ型糖尿病患病率分布的影响[J]. 地球信息科学学报, 2020, 22(11): 2177-2187. |
[7] | 汪小英, 李小漫, 沈镭, 王宜龙. 长江经济带城乡一体化对能源效率的空间效应分析[J]. 地球信息科学学报, 2020, 22(11): 2188-2198. |
[8] | 关庆锋, 任书良, 姚尧, 梁迅, 周剑锋, 袁泽皓, 戴良洋. 耦合手机信令数据和房价数据的城市不同经济水平人群行为活动模式研究[J]. 地球信息科学学报, 2020, 22(1): 100-112. |
[9] | 刘玲,李钢,杨兰,薛淑艳. 深圳市快递自提点的空间分布特征与影响因素[J]. 地球信息科学学报, 2019, 21(8): 1240-1253. |
[10] | 阎世杰, 王欢, 焦珂伟. 京津冀地区植被时空动态及定量归因[J]. 地球信息科学学报, 2019, 21(5): 767-780. |
[11] | 郑斓, 任红艳, 施润和, 鲁亮. 珠江三角洲地区登革热流行风险空间模拟与预测[J]. 地球信息科学学报, 2019, 21(3): 407-416. |
[12] | 丁晓彤, 余卓渊, 宋海慧, 谢云鹏, 吕可晶. 基于信息熵的中国自然疫源性疾病分布特征研究[J]. 地球信息科学学报, 2019, 21(12): 1877-1887. |
[13] | 施国萍, 何永健, 张眉, 邱新法, 曾燕. 基于GridMet模型的浙江省温湿指数空间分布及地形影响分析[J]. 地球信息科学学报, 2019, 21(12): 1923-1933. |
[14] | 庞海洋, 孔祥生, 贺正洋, 苏晓强. 山东半岛降雪时空分布特征[J]. 地球信息科学学报, 2019, 21(11): 1721-1734. |
[15] | 张丽丽, 赵明伟, 赵娜, 岳天祥. 基于OCO-2卫星观测模拟高精度XCO2的空间分布[J]. 地球信息科学学报, 2018, 20(9): 1316-1326. |
|