[1] |
Chen S, Yang J, Yang W, et al. COVID-19 control in China during mass population movements at New Year[J]. The Lancet, 2020,395(10226):764-766.
doi: 10.1016/S0140-6736(20)30421-9
|
[2] |
冯明翔, 方志祥, 路雄博, 等. 交通分析区尺度上的COVID-19时空扩散推估方法——以武汉市为例[J]. 武汉大学学报·信息科学版, 2020,45(5):651-657,681.
|
|
[ Feng M X, Fang Z X, Lu X B, et al. Traffic analysis zone-based epidemic estimation approach of COVID-19 based on mobile phone data: An example of Wuhan[J]. Geomatics and Information Science of Wuhan University, 2020,45(5):651-657,681. ]
|
[3] |
Altmann D M, Douek D C, Boyton R J. What policy makers need to know about COVID-19 protective immunity[J]. The Lancet, 2020,395(10236):1527-1529.
doi: 10.1016/S0140-6736(20)30985-5
|
[4] |
Prem K, Liu Y, Russell T W, et al. The effect of control strategies to reduce social mixing on outcomes of the COVID-19 epidemic in Wuhan, China: A modelling study[J]. The Lancet Public Health, 2020,5(5):e261-e270.
doi: 10.1016/S2468-2667(20)30073-6
pmid: 32220655
|
[5] |
王艳东, 李昊, 王腾, 等. 基于社交媒体的突发事件应急信息挖掘与分析[J]. 武汉大学学报·信息科学版, 2016,41(3):290-297.
|
|
[ Wang Y D, Li H, Wang T, et al. The mining and analysis of emergency information in sudden events based on social media[J]. Geomatics and Information Science of Wuhan University, 2016,41(3):290-297. ]
|
[6] |
Garrett L. COVID-19: The medium is the message[J]. The Lancet, 2020,395(10228):942-943.
doi: 10.1016/S0140-6736(20)30600-0
|
[7] |
黄发良, 冯时, 王大玲, 等. 基于多特征融合的微博主题情感挖掘[J]. 计算机学报, 2017,40(4):872-888.
|
|
[ Huang F L, Feng S, Wang D L, et al. Mining topic sentiment in microblogging based on multi-feature fusion[J]. Chinese Journal of Computers, 2017,40(4):872-888. ]
|
[8] |
陈梓, 高涛, 罗年学, 等. 反映自然灾害时空分布的社交媒体有效性探讨[J]. 测绘科学, 2017,42(8):44-48,129.
|
|
[ Chen Z, Gao T, Luo N X, et al. Empirical discussion on relation between realistic disasters and social media data[J]. Science of Surveying and Mapping, 2017,42(8):44-48,129. ]
|
[9] |
黄晓斌, 赵超. 文本挖掘在网络舆情信息分析中的应用[J]. 情报科学, 2009,27(1):94-99.
|
|
[ Huang X B, Zhao C. Application of text mining technology in analysis of Net-Mediated public sentiment[J]. Information Science, 2009,27(1):94-99. ]
|
[10] |
周艳, 李妍羲, 黄悦莹, 等. 基于社交媒体数据的城市人群分类与活动特征分析[J]. 地球信息科学学报, 2017,19(9):1238-1244.
doi: 10.3724/SP.J.1047.2017.01238
|
|
[ Zhou Y, Li Y X, Huang Y Y, et al. Analysis of classification methods and activity characteristics of urban population based on social media data[J]. Journal of Geo-information Science, 2017,19(9):1238-1244. ]
|
[11] |
苏凯, 程昌秀, Murzintcev N, 等. 主题模型在基于社交媒体的灾害分类中的应用及比较[J]. 地球信息科学学报, 2019,21(8):1152-1160.
doi: 10.12082/dqxxkx.2019.190046
|
|
[ Su K, Cheng C X, Murzintcev N, et al. Application and comparison of topic model in identifying latent topics from disaster-related tweets[J]. Journal of Geo-information Science, 2019,21(8):1152-1160. ]
|
[12] |
Wang Z, Ye X, Tsou M H. Spatial, temporal, and content analysis of Twitter for wildfire hazards[J]. Natural Hazards, 2016,83(1):523-540.
doi: 10.1007/s11069-016-2329-6
|
[13] |
Li S, Liu Z, Li Y. Temporal and spatial evolution of online public sentiment on emergencies[J]. Information Processing and Management, 2020,57(2):102177.
doi: 10.1016/j.ipm.2019.102177
pmid: 32287939
|
[14] |
王宏俐, 李王莹, 刘书凝, 等. “英国脱欧”社交网络舆情分析与启示[J]. 情报杂志, 2020,39(4):98-103.
|
|
[ Wang H L, Li W Y, Liu S N, et al. Research into Social Network Public Opinion on the "Brexit"[J]. Journal of Intelligence, 2020,39(4):98-103. ]
|
[15] |
吴娱. 网络舆情分析关键技术研究与实现[D]. 成都:电子科技大学, 2011.
|
|
[ Wu Y. Research and realization of key technology of network public opinion analysis[D]. Chengdu: University of Electronic Science and Technology, 2011. ]
|
[16] |
裴韬, 郭思慧, 袁烨城, 等. 面向公共安全事件的网络文本大数据结构化研究[J]. 地球信息科学学报, 2019,21(1):2-13.
doi: 10.12082/dqxxkx.2019.180680
|
|
[ Pei T, Guo S H, Yuan H C, et al. Public security event themed web text structuring[J]. Journal of Geo-information Science, 2019,21(1):2-13. ]
|
[17] |
Han X, Wang J, Zhang M, et al. Using social media to mine and analyze public opinion related to COVID-19 in China[J]. International Journal of Environmental Research and Public Health, 2020,17(8):2788.
doi: 10.3390/ijerph17082788
|
[18] |
王敬泉, 王凯. 基于GIS的突发事件网络舆情传播可视化探究[J]. 测绘通报, 2019(12):142-146.
|
|
[ Wang J Q, Wang K. Research on the visualization of network public opinion of emergence spreading on GIS[J]. Bulletin of Surveying and Mapping, 2019(12):142-146. ]
|
[19] |
陈兴蜀, 常天祐, 王海舟, 等. 基于微博数据的“新冠肺炎疫情”舆情演化时空分析[J]. 四川大学学报(自然科学版), 2020,57(2):409-416.
|
|
[ Chen X S, Chang T Y, Wang H Z, et al. Spatial and temporal analysis on public opinion evolution of epidemic situation about novel coronavirus pneumonia[J]. Journal of Sichuan University (Natural Science Edition), 2020,57(2):409416. ]
|
[20] |
Shen D, Yang Q, Sun J, et al. Thread detection in dynamic text message streams [C]// International ACM SIGIR Conference on Research and Development in Information Retrieval, Washington, USA, 2006: 35-42.
|
[21] |
曹彦波. 基于新浪微博的2018年云南通海5.0级地震舆情时空特征分析[J]. 地震研究, 2018,41(4):525-533.
|
|
[ Cao Y B. Analysis of the spatial and temporal characteristics of public opinion about Yunnan Tonghai Ms5.0 earthquake in 2018 based on Sina Micro-blog [J]. Journal of Seismological Research, 2018,41(4):525-533. ]
|
[22] |
谌志群, 鞠婷. 基于BERT和双向LSTM的微博评论倾向性分析研究[J/OL]. 情报理论与实践:1-7( 2020-04-13).
|
|
[ Chen Z Q, Ju T. Research on tendency analysis of microblog comments based on BERT and BLSTM[J/OL]. Information Studies: Theory and Application:1-7( 2020-04-13). ]
|
[23] |
周中华, 张惠然, 谢江. 基于Python的新浪微博数据爬虫[J]. 计算机应用, 2014,34(11):3131-3134.
doi: 10.11772/j.issn.1001-9081.2014.11.3131
|
|
[ Zhou Z H, Zhang H R, Xie J. Data crawler for Sina Weibo based on Python[J]. Journal of Computer Applications, 2014,34(11):3131-3134. ]
|
[24] |
Weibo: People's Daily [EB/OL]. https://weibo.com/rmrb.
|
[25] |
Liu B. Opinion mining and sentiment analysis[M]. Springer, Berlin, 2011.
|
[26] |
Tai Z S, Fei W F, Fan D, et al. Research on the majority decision algorithm based on WeChat sentiment classification[J]. Journal of Intelligent and Fuzzy Systems, 2018,35(3):2975-2984.
doi: 10.3233/JIFS-169653
|
[27] |
林志萍, 王丽萍, 余斌, 等. 抗击新型冠状病毒肺炎疫情期间一线防疫人员不良情绪反应及其影响因素分析[J]. 中国公共卫生, 2020,36(5):677-681.
|
|
[ Lin Z P, Wang L P, Yu B, et al. Adverse emotional response and its influencing factors among frontline health workers during coronavirus disease 2019 epidemic[J]. Chinese Journal of Public Health, 2020,36(5):677-681. ]
|
[28] |
张岩, 李英冰, 郑翔. 基于微博数据的台风“山竹”舆情演化时空分析[J/OL]. 山东大学学报(工学版): 1-9(2020-02-22).
|
|
[ Zhang Y, Li Y B, Zheng X. Spatial and temporal analysis of network public opinion evolution of typhoon “Mangkhut” based on Weibo data[J/OL]. Journal of Shandong University (Engineering Science): 1-9(2020-02-22).]
|
[29] |
赵润乾, 吴渝, 陈昕. 大规模社交网络社区发现及可视化算法[J]. 计算机辅助设计与图形学学报, 2017,29(2):328-336.
|
|
[ Zhao R Q, Wu Y, Chen X. An algorithm for large-scale social network community detection and visualization[J]. Journal of Computer-Aided Design and Computer Graphics, 2017,29(2):328-336. ]
|
[30] |
Bastian M, Heymann S, Jacomy M. Gephi: An open source software for exploring and manipulating networks [C]//International AAAI Conference on Weblogs and Social Media, California, USA, 2009.
|
[31] |
Xie T, Yang Y, Li Q, et al. Knowledge graph construction for intelligent analysis of social networking user opinion[M] //Advances in E-Business Engineering for Ubiquitous Computing, Springer, Cham, 2020.
|