地球信息科学学报 ›› 2021, Vol. 23 ›› Issue (2): 222-235.doi: 10.12082/dqxxkx.2021.200296
刘亚溪1,2(), 宋辞1, 刘起勇3, 张知新4, 王席1,2, 马佳5, 陈晓1,2, 裴韬1,2,*(
)
收稿日期:
2020-06-09
修回日期:
2020-07-20
出版日期:
2021-02-25
发布日期:
2021-04-25
作者简介:
刘亚溪(1994— ),男,甘肃陇南人,博士生,主要研究方向为时空大数据挖掘。E-mail: 基金资助:
LIU Yaxi1,2(), SONG Ci1, LIU Qiyong3, ZHANG Zhixin4, WANG Xi1,2, MA Jia5, CHEN Xiao1,2, PEI Tao1,2,*(
)
Received:
2020-06-09
Revised:
2020-07-20
Online:
2021-02-25
Published:
2021-04-25
Contact:
PEI Tao
Supported by:
摘要:
本文收集了重庆市2020年1月21日—2月24日确诊的545例新型冠状病毒肺炎(COVID-19)病例个案信息,结合1500万手机用户在疫情期间的信令轨迹大数据,分析了其疫情的时空演化特征以及人群活动的变化规律,并从复杂网络的角度揭示了疫情分布的异质性,从疫情传播与人群活动之间的关系揭示了异质性的原因。研究发现:① 重庆市疫情在时间上,经历了以输入病例为主、输入和本地病例共存、以本地病例为主3个阶段,病例实时再生数(Rt)初期较高,随着防控措施的实施,逐步减小;空间上,病例分布呈现显著聚集性,病例高聚集区主要分布在以万州区为核心的渝东北地区和以主城区为核心的渝西南地区;② 疫情发生后,重庆市人群移动总量减少为疫情前的53.20%,减少主要集中在主城区以及其他各区县的中心城区,而郊区、农村的人群移动变化不大,甚至有所增加;③ 人群活动与病例发生之间存在不同程度的相关性,具体为:每日人群移动总量与病例实时再生数、一个平均潜伏期(7 d)后的每日新增病例数的相关系数为0.97、0.89,揭示了人群活动与病例增长的时间相关性;各街道(乡镇)人群移动总量与其累计确诊病例数、本地感染病例数之间的相关系数为0.40、0.35,揭示了人群活动与病例空间分布的相关性;病例高聚集区与人群移动网络社区对应,且与网络社区内人群活动较强的区域吻合,揭示了重庆市疫情传播的本地聚集特征。大数据与疫情信息的聚合分析证实,切断人群移动网络社区之间的连接,并遏制疫情高风险社区内部的传播是在城市内部疫情防控的有效措施。
刘亚溪, 宋辞, 刘起勇, 张知新, 王席, 马佳, 陈晓, 裴韬. 重庆市新型冠状病毒肺炎流行时空特征及其与人群活动性的关系[J]. 地球信息科学学报, 2021, 23(2): 222-235.DOI:10.12082/dqxxkx.2021.200296
LIU Yaxi, SONG Ci, LIU Qiyong, ZHANG Zhixin, WANG Xi, MA Jia, CHEN Xiao, PEI Tao. Spatial-temporal Characteristics of COVID-19 in Chongqing and Its Relationship with Human Mobility[J]. Journal of Geo-information Science, 2021, 23(2): 222-235.DOI:10.12082/dqxxkx.2021.200296
[1] | WHO. Coronavirus disease (COVID-19) situation reports[EB/OL].https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200602-covid-19-sitrep-134.pdf?sfvrsn=cc95e5d5_2 |
[2] | Fanelli D, Piazza F. Analysis and forecast of COVID-19 spreading in China, Italy and France[J]. Chaos, Solitons & Fractals, 2020,134:109761. |
[3] | Wu J T, Leung K, Leung G M. Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan,China:a modelling study[J]. The Lancet, 2020,395(10225):689-697. |
[4] |
Cao Z, Zhang Q, Lu X , et al. Incorporating human movement data to improve epidemiological estimates for 2019-nCoV[J]. medRxiv [preprint], 2020. doi: 10.1101/2020.02.07.20021071.
doi: 10.1101/2020.04.15.20064931 pmid: 32511587 |
[5] |
Jia J S, Lu X, Yuan Y , et al. Population flow drives spatio-temporal distribution of COVID-19 in China[J]. Nature, 2020,582:389-394.
doi: 10.1038/s41586-020-2284-y pmid: 32349120 |
[6] |
Chen Z L, Zhang Q, Lu Y , et al. Distribution of the COVID-19 epidemic and correlation with population emigration from wuhan, China[J]. Chinese Medical Journal, 2020,133(9):1044-1050.
pmid: 32118644 |
[7] |
Chinazzi M, Davis J T, Ajelli M , et al. The effect of travel restrictions on the spread of the 2019 novel coronavirus (COVID-19) outbreak[J]. Science, 2020,368(6489):395-400.
doi: 10.1126/science.aba9757 pmid: 32144116 |
[8] |
Kraemer M U G, Yang C H, Gutierrez B , et al. The effect of human mobility and control measures on the COVID-19 epidemic in China[J]. Science, 2020,368(6490):493-497.
doi: 10.1126/science.abb4218 pmid: 32213647 |
[9] |
Tian H, Liu Y, Li Y , et al. An investigation of transmission control measures during the first 50 days of the COVID-19 epidemic in China[J]. Science, 2020,368(6491):638-642.
pmid: 32234804 |
[10] | Gao S, Rao J, Kang Y , et al. Mapping county-level mobility pattern changes in the United States in response to COVID-19[J]. SIGSPATIAL Special, 2020,12(1):16-26. |
[11] | Gao S, Rao J, Kang Y , et al. Mobile phone location data reveal the effect and geographic variation of social distancing on the spread of the COVID-19 epidemic[J]. arXiv preprint arXiv: 2004.11430, 2020. |
[12] | Wang J, Tang K, Feng K , et al. When is the COVID-19 Pandemic Over? Evidence from the Stay-at-home Policy Execution in 106 Chinese Cities[J]. Available at SSRN: https://ssrn.com/abstract=3561491, 2020. |
[13] | 王皎贝, 李钢, 王建坡, 等. 陕西省COVID-19疫情时空演化与风险画像[J]. 热带地理, 2020,40(3):432-445. |
[ Wang J B, Li G, Wang J P, et al. Spatiotemporal evolution and risk profiling of COVID-19 epidemic in ShanxiProvince[J]. Tropical Geography, 2020,40(3):432-445. ] | |
[14] | 刘郑倩, 叶玉瑶, 张虹鸥, 等. 珠海市新型冠状病毒肺炎聚集发生的时空特征及传播路径[J]. 热带地理, 2020,40(3):422-431. |
[ Liu Z Q, Ye Y Y, Zhang H O, et al. Analysis of the spatio-temporal characteristics and transmission path ofCOVID-19 cluster cases in Zhuhai[J]. Tropical Geography, 2020,40(3):422-431. ] | |
[15] | 赵宏波, 魏甲晨, 王爽, 等. 大城市新冠肺炎疫情风险评估与精准防控对策——以郑州市为例[J]. 经济地理, 2020,40(4):103-109,124. |
[ Zhao H B, Wei J C, Wang S, et al. The risk assessment of Covid-2019 epidemic in metropolis and precise preventionand control measures: A case study of Zhengzhou City[J]. Economic Geography, 2020,40(4):103-109,124. ] | |
[16] | 金安楠, 李钢, 王皎贝, 等. 深圳市新型冠状病毒肺炎(COVID-19)疫情时空演化与防控对策[J]. 陕西师范大学学报(自然科学版), 2020,48(3):18-32. |
[ Jin A N, Li G, Wang J B, et al. Spatial-temporal evolution and control strategies of COVID-19 epidemic in Shenzhen City[J]. Journal of Shanxi Normal University (Natural Science Edition), 2020,48(3):18-32. ] | |
[17] | 刘勇, 杨东阳, 董冠鹏, 等. 河南省新冠肺炎疫情时空扩散特征与人口流动风险评估——基于1243例病例报告的分析[J]. 经济地理, 2020,40(3):24-32. |
[ Liu Y, Yang D Y, Dong G P, et al. The spatio-temporal spread characteristics of 2019 novel coronavirus pneumoniaand risk assessment based on population movement in Henan Province:Analysis of 1243 individual case reports[J]. Economic Geography, 2020,40(3):24-32. ] | |
[18] | 冯明翔, 方志祥, 路雄博, 等. 交通分析区尺度上的新型冠状病毒肺炎时空扩散推估方法:以武汉市为例[J]. 武汉大学学报·信息科学版, 2020,45(5):651-657,681. |
[ Feng M X, Fang Z X, Lu X B, et al. Traffic analysis zone-based epidemic estimation approach of COVID-19 based onmobile phone data:An example of Wuhan[J]. Geomatics and Information Science of Wuhan University, 2020,45(5):651-657,681. ] | |
[19] | Klein B, LaRocky T, McCabey S , et al. Assessing changes in commuting and individual mobility in major metropolitan areas in the United States during the COVID-19 outbreak. Northeastern University. Network Science Institute. 2020. Available online: https://uploads-ssl.webflow.com/5c9104426f6f88ac129ef3d2/e8374ee75221201609ab586_Assessing_mobility_changes_in_the_United_States_during_the_COVID_19_outbreak.pdf |
[20] |
Wallinga J , LipsitchM. How generation intervals shape the relationship between growth rates and reproductive numbers[J]. Proceedings. Biological Sciences, 2007,274(1609):599-604.
doi: 10.1098/rspb.2006.3754 pmid: 17476782 |
[21] | 国家卫生健康委办公厅. 新型冠状病毒肺炎防控方案(第六版)[EB/OL]. http://www.nhc.gov.cn/jkj/s3577/202003/4856d5b0458141fa9f376853224d41d7.shtml. |
[ General Office of National Health Commission. Prevention and control protocol for COVID-19 (Version 6)[EB/OL]. http://www.nhc.gov.cn/jkj/s3577/202003/4856d5b0458141fa9f376853224d41d7.shtml.] | |
[22] | Ma L, Gong M, Liu J , et al. Multi-level learning based memetic algorithm for community detection[J]. Applied Soft Computing, 2014,19:121-133. |
[1] | 杨颖频, 吴志峰, 黄启厅, 骆剑承, 吴田军, 董文, 胡晓东, 肖文菊. 协同遥感与统计数据的粤西甘蔗种植分布提取及时空分析[J]. 地球信息科学学报, 2023, 25(5): 1012-1026. |
[2] | 张宇峥, 鲁岩, 陈晓键. 实体-信息与场景-符号视角下的奶茶消费空间分布特征及影响因素[J]. 地球信息科学学报, 2023, 25(4): 823-837. |
[3] | 巫磊, 吴文挺. GEE平台下结合滤波算法和植被物候特征的互花米草遥感提取最优时间窗口确定[J]. 地球信息科学学报, 2023, 25(3): 606-624. |
[4] | 杨洋, 邵哲平, 赵强, 潘家财, 胡雨, 梅强. 基于厦门港的海上交通事故地理空间分布及风险预测研究[J]. 地球信息科学学报, 2022, 24(9): 1676-1687. |
[5] | 郭春华, 朱秀芳, 张世喆, 唐明秀, 徐昆. 基于CMIP6的中国未来高温危险性变化评估[J]. 地球信息科学学报, 2022, 24(7): 1391-1405. |
[6] | 赵迪, 陈鹏, 李海成, 苗红斌. 2005—2018年北京市外来人口迁移特征与影响因素分析[J]. 地球信息科学学报, 2022, 24(4): 698-710. |
[7] | 詹琪琪, 赵伟, 杨梦娇, 付浩, 李昕娟, 熊东红. 雅鲁藏布江中部流域土地沙化遥感识别[J]. 地球信息科学学报, 2022, 24(2): 391-404. |
[8] | 代文, 陈凯, 王春, 李敏, 陶宇. 顾及DEM误差空间自相关的地形变化检测方法[J]. 地球信息科学学报, 2022, 24(12): 2297-2308. |
[9] | 陈伟杰, 赵楠, 张婕姝, 宋炳良. AIS数据在集装箱港口服务效率的应用研究[J]. 地球信息科学学报, 2022, 24(1): 153-164. |
[10] | 曾磊鑫, 刘涛, 杜萍. 基于多源数据的夜间经济时空分布格局研究方法[J]. 地球信息科学学报, 2022, 24(1): 38-49. |
[11] | 冯子钰, 施润和. 中国近地面PM2.5浓度与排放的时空分布及其关联分析[J]. 地球信息科学学报, 2021, 23(7): 1221-1230. |
[12] | 杨灿灿, 许芳年, 江岭, 王瑞璠, 尹力, 赵明伟, 张鲜鲜. 基于街景影像的城市道路空间舒适度研究[J]. 地球信息科学学报, 2021, 23(5): 785-801. |
[13] | 於佳宁, 刘凯, 张冰玥, 黄滢, 范晨雨, 宋春桥, 汤国安. 中国区域TanDEM-X 90 m DEM高程精度评价及其适用性分析[J]. 地球信息科学学报, 2021, 23(4): 646-657. |
[14] | 应申, 窦小影, 徐雅洁, 苏俊如, 李霖. 新型冠状病毒肺炎疫情可视化进展与分析[J]. 地球信息科学学报, 2021, 23(2): 211-221. |
[15] | 裴韬, 王席, 宋辞, 刘亚溪, 黄强, 舒华, 陈晓, 郭思慧, 周成虎. COVID-19疫情时空分析与建模研究进展[J]. 地球信息科学学报, 2021, 23(2): 188-210. |
|